

PHASE II ESA - SUBSURFACE INVESTIGATION

1844 S. Laramie Avenue Cicero, Illinois 60804 Cook County

Prepared for:

Town of Cicero 4949 West Cermak Road Cicero, Illinois 60804

June 9, 2010

CERTIFICATION

To the best of my knowledge and belief this investigation and evaluation have been performed in conformance with all applicable legal requirements and accepted practices prevailing in the environmental consulting industries. The personnel who performed the investigation are properly licensed and certified in accordance with the requirements of federal, state, and local laws, rules and regulations.

K-Plus Engineering, its officers, and its employees have no present or contemplated interest in the property or the parties involved. Our employment and compensation for preparing this report are not contingent upon any action or event resulting from the analyses, opinions, observations, or conclusions, in or from the use of, this report. The statements contained herein, on which our observations, opinions, and conclusions were based, are deemed factual. The reported analyses, opinions, observations, and conclusions are unbiased, professional, and limited only by the reported assumptions, qualifications, and conditions stated herein. All information in this report is from sources deemed to be reliable; however, no representation or warranty is made as to the accuracy thereof. If necessary, expert testimony and other legal appearances will be provided for a reasonable fee to be arranged.

This report has been prepared specifically for the use by our Client. No third party may use the information in this report without obtaining the permission of both K-Plus Engineering and the client, for whom this report was prepared. In no event may this report be used in whole or in part in any public offering or security without the prior written consent of K-Plus Engineering. No abridgment, abstracting, or excerpting of this report may be made for any purpose whatsoever without obtaining the permission of K-Plus Engineering.

Sincerely,

K-PLUS ENGINEERING

Jessica Madsen Sr. Project Manager

Daniel M. Caplice, P.E.

iel M. Caplace

TABLE OF CONTENTS

1.0		INTRODUCTION	
2.0		SUBJECT PROPERTY	
	2.2	Site Features	
	2.3	Surrounding Area	
	2.4	Topography	4
	2.5	Site Geology	
3.0		SITE HISTORY	
4.0		METHODS AND EQUIPMENT	
	4.1	Drilling	
	4.2	Field Screening and Sample Selection	
	4.3	Sample Preservation and Laboratory Analysis	
	4.4	Decontamination	
5.0		SOIL INVESTIGATION FINDINGS	
	5.1	Field Observations	
	5.2	Soil Analytical Results	12
	5.3	Groundwater Analytical Results	Error! Bookmark not defined
6.0		CONCLUSIONS	

LIST OF FIGURES

Figure 1	-	Site Location Map	2
C		Surrounding Area Map	
		Topographic Map	
		Stack Unit Map	
C		Berg Map	

LIST OF APPENDICES

Appendix 1 - Detailed Site Figures

Appendix 2 - Boring Logs

Appendix 3 - Analytical Results Table Appendix 4 - Laboratory Data Sheets Appendix 5 - Inspector Qualifications

1.0 INTRODUCTION

On Thursday, May 13, 2010, K-Plus Engineering, LLC (K-Plus) conducted a Phase II Environmental Site Assessment - Subsurface Investigation of the industrial property located at 1844 S. Laramie Avenue in Cicero, Illinois (Subject Property). In order to evaluate the subsurface soils, a total of nine (9) soil borings were advanced to a depth of 16 feet below ground surface (bgs). Analytical testing of the soil samples included: volatile organic compounds (VOCs) including benzene-toluene-ethylbenzene-xylenes (BTEX), and polynuclear aromatic hydrocarbons (PNAs). This document outlines the investigation activities that were completed by K-Plus at the Subject Property to determine if the historic use of the Subject Property has adversely impacted the subsurface soil.

The weather conditions at the time of the inspection were rainy with temperatures in the mid-70s (degrees Fahrenheit (°F)). As a tool in preparing this report and documenting the conditions encountered at the property, copies of all supporting documents that were relied upon during this project have also been included as appendices in this report.

2.0 SUBJECT PROPERTY

The Subject Property is located north of the intersection between W. 22nd Street and on the west side of South Laramie Avenue. Specifically, the property is located at 1844 South Laramie Avenue in Cicero, Cook County, Illinois (Figure 1).

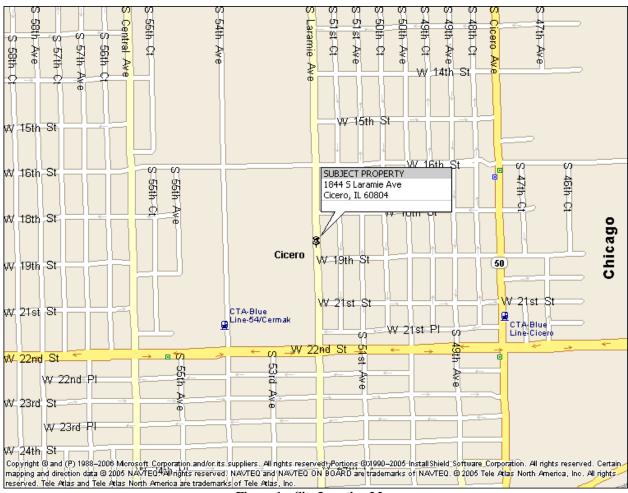


Figure 1 – Site Location Map

2.2 Site Features

The Subject Property measures approximately 3.16 acres 137,500 square feet (ft²) and is currently developed with a partial two-story industrial building that measures approximately 75,500 ft². The building on the Subject Property was noted as constructed of brick masonry on a concrete slab foundation without a basement. A concrete driveway and gravel parking lot surrounds the building at the Subject Property.

walls, and a steel truss ceiling.

The front two story partial portion; the front office area on the second floor was noted as finished with the following: floors were finished with carpeting, or 12" and/or 9" vinyl floor tiles; the interior walls were painted drywall; the ceilings were finished with 2' x 2' suspended ceiling tiles; and fluorescent lighting was noted used throughout the office areas.

The production area of the building was noted as largely unfinished, with exposed concrete floors, unfinished

The Subject Property uses natural gas supplied by NICOR for the Subject Property's heating system. Commonwealth Edison provides electricity to the building. According to the site contact, the building is connected to the Town of Cicero water and sewer systems. Veolia removes household and recyclable wastes from the Subject Property.

2.3 Surrounding Area

The Subject Property is located in an industrial area. Specifically, the Subject Property is bounded on the north by an undeveloped lot, that has been finished as a soccer field for the Town; on the south by an industrial property; on the east by Laramie Avenue, followed by similar industrial buildings; and on the west by part of an industrial property, followed by an abandoned rail spur, and other similar industrial properties (Figure 2).

Figure 2 – Site and Surrounding Area (aerial from October, 2007)

2.4 Topography

In general, the topography of the Subject Property is relatively flat, with no discernible elevation changes. According to the United States Geological Survey 7.5 Minute Series Topographic Map of Berwyn, Illinois Quadrangle (1998), the Subject Property lies at a relative surface elevation of approximately 598 feet above mean sea level. The nearest surface water body is South Branch of the Chicago River which is located within 2½ of a mile south of the Subject Property. Regional groundwater flow in the area, however, is expected to flow in a southerly direction (Figure 3).

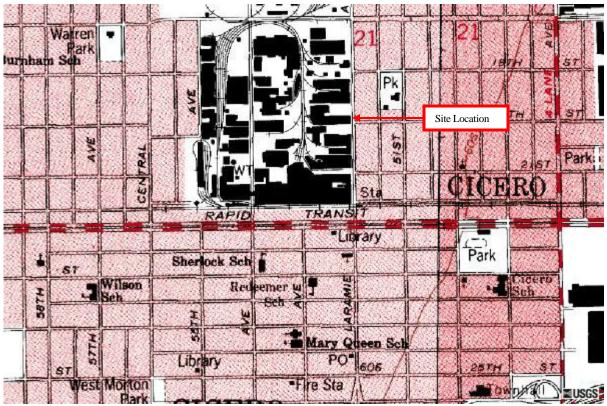
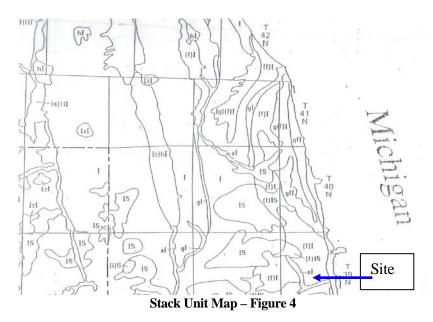


Figure 3 – Topographic Map (USGS, 1998)


2.5 Site Geology

Field observations made during the drilling activities indicated that the subsurface geology at the Subject Property was dominated by brown or gray stiff clayey soils. Specifically, the investigator noted that after the first 1 to 2 feet of most borings consisted of non-native fill materials, which were dominated by a variety of topsoil or silty clays. Below the fill material, soft brown clay or brown and gray mottled clay soil was identified to a depth of approximately 8 to 10 feet; followed by stiff brown clay or stiff gray clay to a depth of approximately 16 feet below grade level (maximum boring termini). Groundwater was encountered at approximately 9 to 10 feet bgl. Copies of the boring logs, including the geologic conditions and field observations made during the subsurface assessment, are included in Appendix 2.

In order to categorize and further assess the geologic conditions encountered at the Subject Property, K-Plus consulted various sources of information including geological maps constructed by the Illinois State Geological Survey. Specific geologic maps used during this investigation include Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters; Potential for Contamination of Shallow Aquifers by Land Burial of Municipal Wastes; and Potential for Contamination of Shallow Aquifers by Surface and Near-Surface Waste Disposal.

The "Stack-Unit Map" reviewed was compiled by the Illinois State Geological Survey from information collected as a part of a geological mapping project sponsored by the Illinois Environmental Protection Agency. The Stack-Unit Map is a particular way of representing geological data to show the distribution of earth materials vertically from the surface to a specified depth as well as horizontally over a specified area. This map provides a foundation for interpretive maps for assessing potential for contamination from waste disposal sites; construction conditions; groundwater availability; and potential for mineral resources such as sand, gravel, dolomite, limestone, or near-surface deposits of coal. The map makes possible the evaluation of the potential uses of any material or sequence of materials.

According to the Surficial Geology of the Chicago Region, the geology at the Subject Property consists primarily of soils in the Lake Plain, which consists primarily of floors of glacial lakes flattened by wave erosion and by minor deposition in low areas; largely underlain by glacial till; thin deposits of silt, clay and sand of the Equality Formation present locally. This is corroborated by the Stack-Unit Map, these materials are present at depths greater than approximately 19.7 feet (6 m) thick (Figure 4).

K-Plus also consulted the following geological maps: Potential for Contamination of Shallow Aquifers by Land Burial of Municipal Wastes; and Potential for Contamination of Shallow Aquifers

by Surface and Near-Surface Waste Disposal. These maps were constructed by the Illinois State Geological Survey to describe and map geologic materials to a depth of 50 feet throughout the state. In these maps, various geologic materials were differentiated by thickness, texture, permeability, and stratigraphic position in order to rate their relative contamination potential for aquifers in any area of the state.

According to the Berg Map, the regional geologic materials in the area are designated as type as an "E"-type soil (Figure 4). An "E" classification is described as uniform, relatively impermeable silty and clayey diamictons greater than 50 feet in thickness, with no evidence of interbedded sand and gravel.

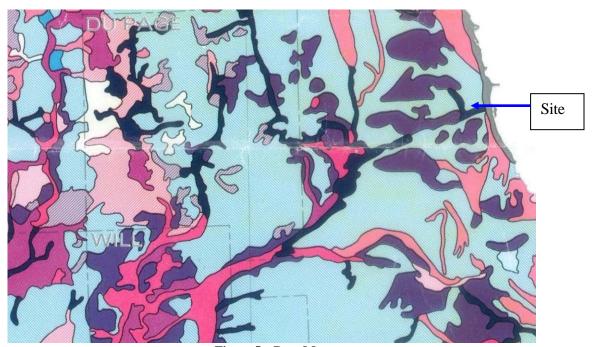


Figure 5 - Berg Map

3.0 SITE HISTORY

As part of this investigation of this property, K-Plus conducted a Phase I Environmental Site Assessment, dated December 7, 2009. K-Plus identified the following Recognized Environmental Conditions (RECs).

- Hazardous substances were noted as used and stored in the building at the Subject Property.
- The Subject Property has been utilized for industrial purposes since its development.

During the site inspection, K-Plus noted that the Subject Property, which appeared to be in fair condition, is used as a manufacturing plant for commercial grade dishwashers, and a small portion of the second story at the front (east) of the building is used for offices. In general, sheets of raw stainless steel are delivered to the Subject Property where machines cut, bend and shape the steel to form the exterior parts of a commercial dishwasher. Internal parts are either purchased prefabricated and stored or assembled on site or generated at the Subject Property. Sections of the Subject Property are designated for tool and die, painting, or dry assembly of the parts.

K-Plus noted the use and storage of hazardous materials on the production floor of the Subject Property. Specifically, K-Plus noted the presence of paint booths and the associated containers storing paints and thinning liquids. K-Plus also large cutting and stamping machines that are surrounded by stains from lubricants and machine oils. K-Plus also noted acetylene containers, and other similar products at work stations located throughout the production floor.

According to the environmental database, the Subject Property is not identified on any environmental database.

The use and storage of hazardous materials on the Subject Property is identified as an REC. The fact that this site does not appear on environmental databases also is identified as an REC for the Subject Property. Although environmental reporting appears to occur on the property, based on the walk-through inspection proper documentation of recycling and disposal practices should be reported to governmental agencies.

Further investigation of the Subject Property would be necessary in order to determine what, if any, impact the current and historic industrial operations have had on the subsurface of the Subject Property.

4.0 METHODS AND EQUIPMENT

All borings were completed under the direct supervision of a K-Plus inspector who was on-site during all field work to coordinate the drillers, choose appropriate environmental boring locations and sample depths, collect and screen soil samples, and log the geologic characteristics of each borehole. All drilling work was performed in accordance with applicable provisions of the American Society of Testing Materials (ASTM) standards for environmental and geotechnical drilling, which specify the techniques used for sampling and drilling.

4.1 Drilling

All drilling was completed with a truck-mounted Geoprobe drill rig equipped with a Macro-Core[®] continuous-core sampler. The Geoprobe uses both static and dynamic percussion forces to advance various sampling apparatus to retrieve core samples. The Macro-Core[®] is a solid barrel, open steel tube that is four feet long, has an inside diameter of 2½ inches, and is equipped with a four foot plastic liner for sample collection. The use of sample liners greatly reduces the chance of cross contamination between samples and provides better sample recovery. The details of each boring were recorded on separate logs which contain the following information for each borehole:

- Lithology description for each change in stratum, and the level of each change;
- relative moisture content of each sample interval;
- length of sample recovery from every four feet of Macro-Core[®] sample;
- presence of any water and the level at which it was encountered;
- presence of contamination by field screening; and
- depth of the sample collection.

4.2 Field Screening and Sample Selection

In accordance with ASTM standards and in order to identify soil contamination, the on-site geologist determined the geologic lithology, and constructed a profile of each soil column from the continuous soil samples which were collected using a four foot Macro-Core[®] sampler at four foot intervals from surface level to the boring terminus. Undisturbed soil samples from each Macro-Core[®] were visually classified in the field according to the Unified Soil Classification System (USCS). The characteristics of each sample such as color, odor, texture, relative moisture, sediment type, or disturbance was immediately recorded in the test boring log.

All soil samples recovered during the fieldwork were field screened for the presence of contamination by visual and olfactory assessment, and evaluation using a photo-ionization detector (PID). All field screening observations were recorded on the respective boring logs along with the geologic data.

During the fieldwork, all individual Macro-Core[®] soil samples were immediately placed in sample containers and were labeled to identify the boring location, sample depth, and sample number. Generally, the soil sample from each boring which exhibits the greatest degree of contamination in the field is submitted for laboratory analysis. This methodology is useful when attempting to identify and characterize contamination in a specific area. In certain instances, multiple soil samples may be collected in order to better delineate the vertical extent of contamination. The first sample is collected from the most contaminated material in order to characterize the contamination and determine the concentrations of the specific contaminants, while the other samples are collected from other depths to assist in approximating the vertical extent of the contamination.

In instances where groups of borings from a specific areas of concern exhibit similar evidence of contamination (i.e. similar odor, similar discoloration pattern, etc.), soil samples from the individual borings were selected to provide the most information regarding the extent of contamination in that area. For example, when applicable, at least one soil sample is collected from the most grossly contaminated material in order to establish the types and concentrations of contaminants present. Soil samples from adjacent borings in the same area are often collected from below the obviously contaminated material in an attempt to approximate the vertical extent of the contamination in that area. This approach is effective in establishing the nature and approximate extent of contamination while conserving analytical costs.

4.3 Sample Preservation and Laboratory Analysis

At least one soil sample from each soil boring was selected for laboratory testing. Soil was packed "air tight" and placed into specially prepared glass sample jars equipped with Teflon lined lids for VOCs. Soil samples to be analyzed for VOCs were collected using a 5 gram soil syringe sampling tool. The 5 grams of soil were then immediately transferred to one 40 milliliter (mL) vial containing sodium hydrogen sulfate (NaHSO₄) or Methanol preservatives. Each sample jar or 40 mL vial container was then labeled with a unique sample number to identify the sample's location, boring number, sample depth and date of collection. All samples were immediately preserved in a cooler until receipt by the laboratory for analysis. All samples were transferred to STAT Analysis Corporation (STAT) located in Chicago, Illinois under strict chain-of-custody procedures for analysis of VOCs according to standard United States Environmental Protection Agency (U.S. EPA) methodologies. All analytical testing was performed in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP). All samples were analyzed within established holding times, all quality control testing met U.S. EPA or laboratory criteria, except where noted in the case narrative or analytical report. No data were qualified by the laboratory. All samples were analyzed for the requested parameters; there is no missing data. Where data was questionable when checked by K-Plus personnel, the laboratory was requested to check the data, and if necessary, re-analyze the sample to ensure that the data were accurate. Data meets quality control criteria.

Blakeslee

1844 S. Laramie, Cicero, Illinois 60804

4.4 Decontamination

In order to ensure that no cross-contamination between soil sampling occurs, all non-dedicated sampling equipment was decontaminated after collection of each sample. Sampling equipment was scrubbed with a brush to remove loose material and then washed thoroughly with a laboratory grade detergent and water to remove all particulate matter and surface film. After washing, each piece was rinsed with clean tap water. Dedicated sampling equipment such as plastic scoops, spoons and latex gloves were disposed of after the handling of each sample was complete. Field equipment such as the water level, pH meter and temperature/conductivity meter were rinsed with distilled water between samples.

5.0 SOIL INVESTIGATION FINDINGS

In order to evaluate the subsurface soils, a total of nine (9) soil borings were advanced to a depth of 16 feet bgs at selected areas of the Subject Property. Soil borings (KP1 through KP9) were performed to determine if the operations at the property, both current and historic, had negative impacts to the subsurface.

During this assessment the building had been vacated of business practices and vandals had taken walls and doors from the property making the conditions inside the building perilous to the drilling crew. Therefore the interior borings planned for the property were eliminated by the project manager, until the building could be razed or stabilized.

5.1 Field Observations

During the field activities, each borehole was evaluated for contaminants using visual and olfactory methods. Field observations indicated that evidence of staining was noted in several borings at the Subject Property. However, olfactory observations did not note significant evidence of contamination.

K-Plus monitored soil borings continuously using a PID. PID readings ranged from 0.0 to 0.8 parts per million (ppm), with the highest reading found in the soil collected from KP8. Samples for PID analysis were collected from every four foot interval of each boring. The soil borings advanced at the Subject Property revealed subsurface soils that were dominated by a combination of silty/clayey soils. No definitive indications of groundwater was encountered, therefore no groundwater samples were collected. All borings ended at 16 feet bgs in stiff brown or gray clay. Detailed boring logs documenting geologic notes and observations made by the K-Plus geologist are included in Appendix 2.

5.2 Soil Analytical Results

K-Plus collected at least one (1) to two (2) soil samples from each soil boring. Samples were taken from intervals that exhibited the highest PID reading, or showed evidence of staining. Additional samples were taken in locations to help delineate any potential contamination that may have been found in the other samples.

For the purposes of this assessment, all soil analytical results were compared to the most stringent Tier I Soil Remediation Objectives (SROs) for residential properties identified in Section 35 Illinois Administrative Code (IAC) Part 742 – Tiered Approach to Corrective Action Objectives (TACO). In general, the SROs outlined in TACO are subdivided into three primary exposure pathways, including the soil ingestion, soil inhalation, and soil component of the groundwater ingestion exposure route (SCGIER). Illinois TACO also has prepared a table (Table G) which outlines inorganic contamination limits that may be typically found in metropolitan areas or areas where

inorganic contamination could be naturally occurring. K-Plus compared analytical results to this table. Additionally, K-Plus consulted the IEPA Background Study for PNA levels titled "Polynuclear Aromatic Hydrocarbon Background Study, City of Chicago".

A review of the laboratory analytical data showed that vinyl chloride was identified in boring KP7 above the Class 1 SCGIER objective.

Arsenic was identified in borings KP1B, KP3A, KP6B, KP7 and KP8 above the industrial/commercial Ingestion RO, as well as above the Background Table G objective, except KP1B and KP6B, which did not exceed the Background objective.

Barium was identified in borings KP3A and KP8 above the Illinois ROs, as well as above the Background Table G objectives.

Chromium was identified in borings KP1A, KP1B, KP2A, KP3A, KP3B, KP4, KP5, KP6A, KP6B, KP7 and KP8 above Illinois ROs, as well as above the Background Table G objectives.

Lead was identified in borings KP1A, KP6A, KP7 and KP8 above Illinois ROs, as well as above the Background Table G objectives.

Selenium was identified in boring KP7 above the Illinois ROs, as well as above the Background Table G objectives.

Tables of the soil laboratory analytical results are presented in Appendix 3 and laboratory data sheets are found in Appendix 4.

6.0 CONCLUSIONS

This investigation was conducted in order to determine the extent of VOC, PNA and metal contamination at the Blakeslee property in Cicero, Illinois based on former operations.

During this Subsurface Investigation, elevated, wide-spread heavy metal constituents were noted in the soil sampled from the Subject Property. The presence of the heavy metal contamination on the property is likely related to plating operations that may have taken place on the property, or metal cutting dust from the former operations on the property. According to Illinois TACO it appears that the contamination may remain in place on the Subject Property with the use of engineered barriers/institutional controls, because the soil attuation capacity and soil saturation limits do not appear to have been exceeded. However, the decision to remediate the site will depend on the future use of the property.

APPENDIX 1 DETAILED SITE FIGURES

Site Map

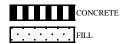
1844 Laramie Avenue Cicero, Illinois Cook County

Document No. 17094L

Boring Location Map

1844 Laramie Avenue Cicero, Illinois **Cook County**

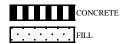
S. Laramie Avenue


Document No. 17094L

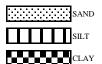
APPENDIX 2 BORING LOGS

BORING / W	ELL NUMBER	1								
B01										
PROJECT N	JMBER	PROJECT NAME				PROJECT LOCATION				
17094L	,	Blakeslee					Cicero, Illinois 60804			
GEOLOGIST		I				DRILLING CONTRACTOR				
Jessica	Madsen					Enviro-Dynamics	s, LLC			
DRILLING E	QUIPMENT / ME	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	I DATE	
track-m	ounted Ge	oprobe		2"		Macro Core		4/13/10 -	4/13/10	
WELL INSTA	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION (FT. ABOVE		GROUND SURFACE	E	TOP OF WELL CASING	ı		TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST
						topsoil				
2		20		no odors						
					CL	soft brown clay				
			0							
 4										
 6	KP1A	50		no odors						
0		30		no odors						
			0							
8			0							
					CL	stiff brown clay				
10		100		no odors						
			0							
12					1	stiff gray clay				
						Sum gray clay				
14		100		no odomo						
 14		100		no odors						
<u> </u>	I/D1D									
 16	KP1B		0							
						EOB @ 16'				
_										
 18		_								
20					1					

BORING / W	ELL NUMBER	1											
B02													
PROJECT N	JMBER	PROJECT NAME				PROJECT LOCATION							
17094L	,	Blakeslee				1844 S. Larami	e, Cicero, Illinois 6080	4					
GEOLOGIST						DRILLING CONTRACTOR							
Iessica	Madsen					Enviro-Dynamics, LLC							
	QUIPMENT / ME	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD START - FINISH DATE							
	ounted Ge			2"		Macro Core		4/13/10 -					
WELL INST		CASING MAT. / DIA	METER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
No	ALLED:	CASING MAT. / DIA	AMETER	SCREEN:	lire	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
INO ELEVATION	OF			TOP OF WELL CASING			TOP & BOTTOM OF SCREE	N	DATE				
FT. ABOVE		GROUND SURFAC	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREE	N GW SURFACE	DATE				
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST			
						topsoil							
_ 2	KP2A	20		no odors									
2		20		no odors	CL	brown and gray	mottled clay						
4			0										
_ 4													
_													
— 6		80		no odors									
_ 0		30		no odors									
_			_										
8			0										
_ 0					CL	brown clay							
					02								
— 10		100		no odors									
10		100		no odors									
			_										
 12			0										
12	_				CL	gray clay							
—	WEAR				~~	<i>S</i> ,,							
	KP2B	100		no odors					1				
- 14		100		no odors									
_			_										
 16			0							<u> </u>			
10	_					EOB @ 16'							
_													
10													
 18									1				
20													
20													



BORING / W	ELL NUMBER	7										
B03												
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION						
17094I	_	Blakeslee				1844 S. Laramie, Cicero, Illinois 6080	04					
GEOLOGIST						DRILLING CONTRACTOR						
Jessica	Madsen					Enviro-Dynamics, LLC						
	QUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD START - FINISH DATE						
	ounted Ge			2"		Macro Core		4/13/10 - 4/13/10				
WELL INST.		CASING MAT. / DIA	METER	SCREEN:	TYPE	MATERIAL LENGTH	DIAMETER	SLOT SIZE				
No	LLLD.	CASH (G MITT.) DI	IIIIE I EIC	SCREEN.	TILL	22.1011	BHWETER	DEG I DIEE				
ELEVATION	I OE·	GROUND SURFACI	9	TOP OF WELL CASING		TOP & BOTTOM OF SCRE	EN GW SURFACE	DATE				
(FT. ABOVE		GROUND SURFACE		TOT OT WELL CLIDENC			J. GW SURI ACE	22				
DEPTH	LAB SAMPLE	RECOVERY	PID	REMARKS	UNIFIED CLASS.	DESCRIPTION		GEO.	WELL CONST.			
	SAIVII EE	(%)	(ppm)		CLASS.				CONST.			
						(1/c:11						
						topsoil/fill						
2	KP3A	20		no odors	CL	brown clay						
	Kraa				CL	l Clay						
			0									
 4					1							
		0.0		1								
 6		90		no odors								
0			0									
 8					1							
\vdash												
10		100		no odors	CL	moist tacky brown to gray clay						
10		100		no odors								
_	MDAD		0									
12	KP3B		0									
12						EOB @ 12'						
_												
14		1										
16		-			4							
 18		4										
20		1			1							
					<u> </u>				<u> </u>			



BORING / W	ELL NUMBER	1								
B04										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION				
17094I	_	Blakeslee				1844 S. Laramie,	Cicero, Illinois 60804			
GEOLOGIST		<u> </u>				DRILLING CONTRACTOR	,			
Jessica	Madsen					Enviro-Dynamics.	LLC			
	QUIPMENT / ME	LHOD		SIZE / TYPE OF BIT		SAMPLING METHOD	START - FINISH	DATE		
	ounted Ge			2"		Macro Core		4/13/10 -		
WELL INST.		CASING MAT. / DIA	METED	SCREEN:	TYPE	MATERIAL MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No	ILLED.	CASING WAT. / DIA	ANIL I LK	SCREEN.	THE	MITTERE	ELIVOTTI	DIAMETER	SEOT SIZE	
ELEVATION	LOE.	GROUND SURFACI		TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	CW CURE LOS	DATE	
(FT. ABOVE		GROUND SURFACI		TOF OF WELL CASING		I	TOF & BOTTOM OF SCREEN	GW SURFACE	DATE	ı
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						fill materials				
						Tim materials				
2		0		no odors						
		1 "		no odors	CL	stiff brown clay				
			_							
4			0							
4					1					
6	KP4	60		no odomo						
_ 0		1 00		no odors						
8			0							
0										
_										
10		100		no odors						
10		100		no odors						
_										
12			0							
12						EOB @ 12'				
—										
14										
14										
_										
16]					
- 10										
<u> </u>										
10]								
 18										
-				1						
]					
20										
		l		<u> </u>		<u> </u>				

BORING / W	ELL NUMBER									
B05										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION				
17094I	_	Blakeslee				1844 S. Laramie,	Cicero, Illinois 60804			
GEOLOGIST						DRILLING CONTRACTOR	, , , , , , , , , , , , , , , , , , ,			
Jessica	Madsen					Enviro-Dynamics.	LLC			
	QUIPMENT / MET	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD	DATE			
	ounted Ge			2"		Macro Core		4/13/10 - 4/13/10		
WELL INST.		CASING MAT. / DIA	METED	SCREEN:	TYPE	MATERIAL MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No	ALLED:	CASING WAT./ DIA	WIETEK	SCREEN.	TIFE	MATERIAL	LLNGIII	DIAMETER	SEOT SIZE	
ELEVATION	LOE			TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	away mana	DATE	
(FT. ABOVE		GROUND SURFACE		TOP OF WELL CASING		Τ	TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	I
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						fill materials			1	
						iiii iiiateirais				
2		10		1						
2		10		no odors	CL	stiff brown clay				
					CL	Still blown clay				
			0							
 4					1					
	KP5									
 6		70		no odors						
			0							
8					CI	stiff amore alore				
					CL	stiff gray clay				
10		100		no odors						
			0							
12					+	EOD @ 121			 	
						EOB @ 12'				
 14		1								
∟ ∣										
 16					1					
 18		-								
20					-					

BORING / W	ELL NUMBER	1								
B06										
PROJECT N	JMBER	PROJECT NAME				PROJECT LOCATION				
17094L	1	Blakeslee				1844 S. Laramie	e, Cicero, Illinois 60804	4		
GEOLOGIST		ı				DRILLING CONTRACTOR				
Jessica	Madsen					Enviro-Dynamic	es. LLC			
	QUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD	,	START - FINISH	I DATE	
	ounted Ge			2"		Macro Core		4/13/10 -		
WELL INSTA		CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION	OF.	GROUND SURFACE	F	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	N GW SURFACE	DATE	
(FT. ABOVE		GROOND BON AC						- GW BERGAREL		
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						fill materials				
2		60		no odors	CI	h ad a				
					CL	brown and gray	mottled clay			
	KP6A		0							
 4										
 6		90		no odors						
			0							
8					CL	stiff brown clay				
						Suit blown clay				
10		100								
 10		100		no odors						
_			_							
12	KP6B		0							
- 12						EOB @ 12'				
										
1 1										
_										
 16					_					
 18		4								
10										
_										
20		-		 	4					

BORING / W	ELL NUMBER]								
B07										
PROJECT N		PROJECT NAME				PROJECT LOCATION				
17094I	_	Blakeslee				1844 S. Laramie, Cicero, Il	linois 60804			
GEOLOGIST	Γ					DRILLING CONTRACTOR				
Jessica	Madsen					Enviro-Dynamics, LLC				
	EQUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD	START - FINISH	START - FINISH DATE		
	nounted Ge			2"		Macro Core		4/13/10 -		
WELL INST.		CASING MAT. / DIA	METER	SCREEN:	TYPE	MATERIAL LENGTH		DIAMETER	SLOT SIZE	
No										
ELEVATION	1 OE-	GROUND SURFACI	7	TOP OF WELL CASING		TOP & BO	OTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE		I	_	T	T			GW JORI ACE	J2	T
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.	DESCRI	IPTION		GEO.	WELL CONST.
						fill materials				
						ini materiais				
		20		1						
2		20		no odors	Cl	brown and gray mottled cla	137			
					Ci	and gray mothed cha	ıy			
			0							
 4					1					
 6	VD7	20		no odors						
	KP7									
			0							
8		<u> </u>			CI	stiff haaren alare				
					CL	stiff brown clay				
 10		100		no odors						
			0							
 12					+	EOD @ 12!			1	
						EOB @ 12'				
 14		1								
∟ ∣										
 16		 			1					
 18		-								
20		<u> </u>			-					
		1		1						

JMBER	PROJECT NAME				PROJECT LOCATION						
1	Blakeslee				1844 S. Laramie,	Cicero, Illinois 60804					
,					DRILLING CONTRACTOR	·					
Madsen					Enviro-Dynamics	s. LLC					
	ГНОД		SIZE / TYPE OF BIT								
	_	AMETER		TYPE		LENGTH					
OF.	GROUND SUPEACE	F	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SLIDEACE	DATE			
M.S.L.)	GROOND BORN AC						GW BORT NEL				
LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST		
					fill materials						
			staining noted:								
	20			CY	11 1 200 1						
			no odors	CL	black stiff clay						
KP8		0.8									
				- CT	1 1	w1 1 1					
				CL	brown and gray n	nottled clay					
			_								
	70		no odors								
		0									
				CI	etiff brown clay						
				CL	Still blown clay						
	100										
	100		no odors								
		0									
					FOR @ 12'						
					LOB C 12						
	Madsen QUIPMENT / ME OUNTED GE ALLED? OF: M.S.L.)	Madsen QUIPMENT / METHOD OUNTED GEOPROBE ALLED? CASING MAT. / DIA OF: GROUND SURFACE M.S.L.) LAB RECOVERY (%) 20	Madsen QUIPMENT / METHOD OUNTED GEOPTOBE ALLED? CASING MAT. / DIAMETER OF: GROUND SURFACE M.S.L.) LAB RECOVERY (%) PID (ppm) 20 KP8 0.8	Madsen QUIPMENT / METHOD OUNTED GOUNTED GOUNTED GOUNTED GOUNTED GOUNTED GOUNTED GROUND SURFACE TOP OF WELL CASING M.S.L.) LAB RECOVERY (%) (ppm) REMARKS SAMPLE (%) staining noted; no odors KP8 0.8 70 no odors 100 no odors	Madsen QUIPMENT / METHOD OUNTEd Geoprobe LLED? CASING MAT. / DIAMETER OF: M.S.L.) GROUND SURFACE TOP OF WELL CASING MS.L.) REMARKS UNIFIED CLASS. 20 Staining noted; no odors CL KP8 0.8 70 no odors CL 100 no odors CL	Blakeslee Blakeslee Blakeslee Maddsen CUIPMENT / METHOD COUNTED COUNTED COUNTED COUNTED COUNTED COUNTED CASING MAT. / DIAMETER COF. GROUND SURFACE TOP OF WELL CASING MACRO CORE MATERIAL OF: GROUND SURFACE TOP OF WELL CASING MALE CL STAMPLE CLASS. Fill materials fill materials Staining noted; no odors KP8 O.8 CL brown and gray materials CL Stiff brown clay 100 no odors CL Stiff brown clay	Blakeslee Blakeslee	Blakeslee 1844 S. Laramie, Cicero, Illinois 60804	Madsen Macro Core Macro Macro Core Macro Core Macro Macro Macro Core Macro Macro Core Macro Macro Core Macro Macr		

BORING / W	ELL NUMBER	1								
B09										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION				
17094L	_	Blakeslee				1844 S. Laramie	, Cicero, Illinois 60804			
GEOLOGIST		L				DRILLING CONTRACTOR	· · · · · · · · · · · · · · · · · · ·			
Jessica	Madsen					Enviro-Dynamic	s, LLC			
DRILLING E	EQUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE	
track-m	nounted Ge	oprobe		2"		Macro Core		4/13/10	/13/10	
WELL INST		CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION		GROUND SURFACE	Е	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE	E M.S.L.)									
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						fill materials				
2		10		no odors						
			0							
 4					4					
	KP9					shelby tube				
 6		60		no odors						
			0							
						EOB @ 8'				
						Lob c o				
10										
10										
_										
12					4					
					1					
 14		_								
 16					┪					
<u> </u>										
18		1			1					
20					_					
20										
		1		Ī	i	Ī.				1

APPENDIX 3 ANALYTICAL RESULT TABLES

		Residential R	Coute Specific	Constructi Route Specif	ic Values for	Groundwat	ponent of er Ingestion oute Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.07	< 0.066	< 0.065	< 0.097	< 0.075
71-43-2	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099
78-93-3	2-Butanone							< 0.07	< 0.066	< 0.065	< 0.097	< 0.075
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.047	< 0.044	< 0.043	< 0.064	< 0.05
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-00-3	Chloroethane							< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
74-87-3	Chloromethane							< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0019	< 0.0018	< 0.0017	< 0.0026	< 0.002
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0019	< 0.0018	< 0.0017	< 0.0026	< 0.002
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
591-78-6	2-Hexanone							< 0.019	< 0.018	< 0.017	< 0.026	< 0.02
108-10-1	4-Methyl-2-pentanone							< 0.019	< 0.018	< 0.017	< 0.026	< 0.02
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.014	< 0.013	< 0.013	< 0.019	< 0.015

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

 $Bolded/Shaded\ values\ have\ detected\ results\ exceeding\ the\ lowest\ remediation\ objective.$

				Constructi	ion Worker	Soil Com	ponent of							
		Residential F	Route Specific	Route Specif	fic Values for	Groundwat	er Ingestion							
		Values	for Soil	S	oil		Route Values							
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II							
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.078	< 0.071	< 0.072	< 0.077	< 0.071	< 0.096	< 0.077
71-43-2	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.01	< 0.0095	< 0.0097	< 0.01	< 0.0095	< 0.013	< 0.01
78-93-3	2-Butanone							< 0.078	< 0.071	< 0.072	< 0.077	< 0.071	< 0.096	< 0.077
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.052	< 0.048	< 0.048	< 0.052	< 0.047	< 0.064	< 0.051
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
75-00-3	Chloroethane							< 0.01	< 0.0095	< 0.0097	< 0.01	< 0.0095	< 0.013	< 0.01
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
74-87-3	Chloromethane							< 0.01	< 0.0095	< 0.0097	< 0.01	< 0.0095	< 0.013	< 0.01
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	0.18	< 0.0051
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0021	< 0.0019	< 0.0019	< 0.0021	< 0.0019	< 0.0026	< 0.0021
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0021	< 0.0019	< 0.0019	< 0.0021	< 0.0019	< 0.0026	< 0.0021
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
591-78-6	2-Hexanone							< 0.021	< 0.019	< 0.019	< 0.021	< 0.019	< 0.026	< 0.021
108-10-1	4-Methyl-2-pentanone							< 0.021	< 0.019	< 0.019	< 0.021	< 0.019	< 0.026	< 0.021
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.01	< 0.0095	< 0.0097	< 0.01	< 0.0095	< 0.013	< 0.01
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	< 0.0051
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	< 0.0064	0.0057
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0052	< 0.0048	< 0.0048	< 0.0052	< 0.0047	0.023	< 0.0051
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.016	< 0.014	< 0.014	< 0.015	< 0.014	< 0.019	< 0.015

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

 $Bolded/Shaded\ values\ have\ detected\ results\ exceeding\ the\ lowest\ remediation\ objective.$

				Construction Worker		Soil Com	ponent of						
		Residential Route Specific		Route Specific Values for		Groundwater Ingestion							
		Values for Soil		Soil		Exposure Route Values							
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II						
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
208-96-8	Acenaphthylene							< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.031	< 0.029	0.047	< 0.03	< 0.03	< 0.031
56-55-3	Benz(a)anthracene	0.9		170		2	8	0.092	< 0.029	0.09	< 0.03	< 0.03	< 0.031
50-32-8	Benzo(a)pyrene	0.09		17		8	82	0.045	< 0.029	0.041	< 0.03	< 0.03	< 0.031
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	0.065	< 0.029	0.05	< 0.03	< 0.03	< 0.031
191-24-2	Benzo(g,h,i)perylene							< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	0.036	< 0.029	0.048	< 0.03	< 0.03	< 0.031
218-01-9	Chrysene	88		17,000		160	800	0.084	< 0.029	0.086	< 0.03	< 0.03	< 0.031
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
206-44-0	Fluoranthene	3,100		82,000		4,300	21,000	0.17	< 0.029	0.2	< 0.03	< 0.03	< 0.031
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031
85-01-8	Phenanthrene							0.1	< 0.029	0.19	< 0.03	< 0.03	< 0.031
129-00-0	Pyrene	2,300		61,000		4,200	21,000	0.14	< 0.029	0.15	< 0.03	< 0.03	< 0.031

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest remediation objective.

			Construction Worker		Soil Component of								
	Residential Route Specific		Route Specific Values for		Groundwater Ingestion								
		Values for Soil		Soil		Exposure Route Values							
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II						
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
208-96-8	Acenaphthylene							< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	0.032
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	0.036
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
191-24-2	Benzo(g,h,i)perylene							< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
218-01-9	Chrysene	88		17,000		160	800	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	0.093
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
206-44-0	Fluoranthene	3,100		82,000		4,300	21,000	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	0.035
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03
85-01-8	Phenanthrene							< 0.031	< 0.03	< 0.04	0.031	< 0.031	< 0.03
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.031	< 0.03	< 0.04	< 0.029	< 0.031	< 0.03

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest remediation objective.

			Constructi	on Worker	Soil Com	ponent of						
	Residential I	Route Specific	Route Specif	ic Values for	Groundwat	ter Ingestion						
	Values	for Soil	Se	oil	Exposure R	Route Values						
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II						
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			7.4	12	7	1.8	14	6.7
7440-39-3 Barium	5,500	690,000	14,000	870,000			65	52	49	13	300	73
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.54	< 0.47	< 0.54	< 0.14	< 0.5	< 0.61
7440-47-3 Chromium	230	270	4,100	690			28	21	22	5.8	28	30
7439-92-1 Lead	400		700				23	19	18	4.6	19	18
7439-97-6 Mercury	23	10	61	0.1			< 0.029	< 0.028	< 0.028	< 0.029	< 0.03	< 0.03
7782-49-2 Selenium	390		1,000				< 1.1	< 0.93	< 1.1	< 0.27	< 1	< 1.2
7440-22-4 Silver	390		1,000				< 1.1	< 0.93	< 1.1	< 0.27	< 1	< 1.2

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

			Constructi	on Worker	Soil Com	ponent of						
	Residential F	Route Specific	Route Specif	ic Values for	Groundwat	er Ingestion						
	Values	for Soil	Se	oil	Exposure R	oute Values						
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II						
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			5.5	9.2	5.3	12	17	20
7440-39-3 Barium	5,500	690,000	14,000	870,000			47	44	70	25	33	210
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.56	< 0.5	< 0.59	< 0.57	< 0.61	< 0.6
7440-47-3 Chromium	230	270	4,100	690			67	27	29	20	20	28
7439-92-1 Lead	400		700				15	17	27	18	25	25
7439-97-6 Mercury	23	10	61	0.1			< 0.029	< 0.03	< 0.029	< 0.028	< 0.03	< 0.03
7782-49-2 Selenium	390		1,000				< 1.1	< 1	< 1.2	< 1.1	1.4	< 1.2
7440-22-4 Silver	390		1,000				< 1.1	< 1	< 1.2	< 1.1	< 1.2	< 1.2

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Client: K-Plus Environmental, Inc. Project: 1709LIL, Blakeslee, Cicero, IL

Laboratory: STAT ANALYSIS

Laboratory ID: 10050355-014 Client Sample ID: KP3-Dirty TACO Date Collected: 5/13/2010 11:00

		Residential R	Coute Specific		on Worker ic Values for		ponent of er Ingestion	
		Values	for Soil	Se	oil	Exposure R	oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
7440-38-2	Arsenic					0.05	0.2	< 0.01
7440-39-3	Barium					2.0	2.0	0.19
7440-43-9	Cadmium					0.005	0.05	< 0.005
7440-47-3	Chromium					0.1	1.0	< 0.01
7439-92-1	Lead					0.0075	0.1	< 0.0075
7439-97-6	Mercury					0.002	0.01	< 0.0002
7782-49-2	Selenium					0.05	0.05	< 0.01
7440-22-4	Silver					0.05		< 0.01

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

			ntration of Che										
			Background So	oils	•								
	A 1 .	City of	****** * ****	0 4 11 3/64									
DNIA	Analyte	Chicago		Outside MSA	0.021	0.020	0.021	0.02	0.02	0.021	0.021	0.02	
PNA	Acenaphthene	0.09	0.13	0.04	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Acenaphthylene	0.03	0.07	0.04	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Anthracene	0.25	0.40	0.14	< 0.031	< 0.029	0.047	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Benz(a)anthracene	1.1	1.8	0.72	0.092	< 0.029	0.09	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Benzo(a)pyrene	1.3	2.1	0.98	0.045	< 0.029	0.041	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Benzo(b)fluoranthene	1.5	2.1	0.70	0.065	< 0.029	0.05	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Benzo(k)fluoranthene	1.0	1.7	0.63	0.036	< 0.029	0.048	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Chrysene	1.2	2.7	1.1	0.084	< 0.029	0.086	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Fluoranthene	2.7	4.1	1.8	0.17	< 0.029	0.2	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Fluorene	0.10	0.18	0.04	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Naphthalene	0.04	0.20	0.17	< 0.031	< 0.029	< 0.031	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Phenanthrene	1.3	2.5	0.99	0.1	< 0.029	0.19	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
	Pyrene	1.9	3.0	1.2	0.14	< 0.029	0.15	< 0.03	< 0.03	< 0.031	< 0.031	< 0.03	
INORG	Arsenic		13.0	11.3	7.4	12	7	1.8	14	6.7	5.5	9.2	
	Barium		110	122	65	52	49	13	300	73	47	44	
	Cadmium		0.6	0.50	< 0.54	< 0.47	< 0.54	< 0.14	< 0.5	< 0.61	< 0.56	< 0.5	
	Chromium		16.2	13.0	28	21	22	5.8	28	30	67	27	
	Lead		36.0	20.9	23	19	18	4.6	19	18	15	17	
	Mercury		0.06	0.05	< 0.029	< 0.028	< 0.028	< 0.029	< 0.03	< 0.03	< 0.029	< 0.03	
	Selenium		0.48	0.37	< 1.1	< 0.93	< 1.1	< 0.27	< 1	< 1.2	< 1.1	< 1	
	Silver		0.55	0.50	< 1.1	< 0.93	< 1.1	< 0.27	< 1	< 1.2	< 1.1	< 1	

			ntration of Che Background So				
	Analyte	City of Chicago	Within MSA	Outside MSA			
PNA	Acenaphthene	0.09	0.13	0.04	< 0.029	< 0.031	< 0.03
	Acenaphthylene	0.03	0.07	0.04	< 0.029	< 0.031	< 0.03
	Anthracene	0.25	0.40	0.14	< 0.029	< 0.031	0.032
	Benz(a)anthracene	1.1	1.8	0.72	< 0.029	< 0.031	0.036
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.029	< 0.031	< 0.03
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.029	< 0.031	< 0.03
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.029	< 0.031	< 0.03
	Benzo(k)fluoranthene	1.0	1.7	0.63	< 0.029	< 0.031	< 0.03
	Chrysene	1.2	2.7	1.1	< 0.029	< 0.031	0.093
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.029	< 0.031	< 0.03
	Fluoranthene	2.7	4.1	1.8	< 0.029	< 0.031	< 0.03
	Fluorene	0.10	0.18	0.04	< 0.029	< 0.031	0.035
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.029	< 0.031	< 0.03
	Naphthalene	0.04	0.20	0.17	< 0.029	< 0.031	< 0.03
	Phenanthrene	1.3	2.5	0.99	0.031	< 0.031	< 0.03
	Pyrene	1.9	3.0	1.2	< 0.029	< 0.031	< 0.03
INORG	Arsenic		13.0	11.3	12	17	20
	Barium		110	122	25	33	210
	Cadmium		0.6	0.50	< 0.57	< 0.61	< 0.6
	Chromium		16.2	13.0	20	20	28
	Lead		36.0	20.9	18	25	25
	Mercury		0.06	0.05	< 0.028	< 0.03	< 0.03
	Selenium		0.48	0.37	< 1.1	1.4	< 1.2
	Silver		0.55	0.50	< 1.1	< 1.2	< 1.2

		Soil Saturation Limits for Chemicals With Melting Point < 30°C									
CAS No.	Analyte	(C _{sat})									
VOC 67-64-1	Acetone	100,000	< 0.07	< 0.066	< 0.065	< 0.097	< 0.075	< 0.078	< 0.071	< 0.072	< 0.077
71-43-2	Benzene	870	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-27-4	Bromodichloromethane	3,000	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-25-2	Bromoform	1,900	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
74-83-9	Bromomethane	3,200	< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099	< 0.01	< 0.0095	< 0.0097	< 0.01
75-15-0	Carbon disulfide	720	< 0.047	< 0.044	< 0.043	< 0.064	< 0.05	< 0.052	< 0.048	< 0.048	< 0.052
56-23-5	Carbon tetrachloride	1,100	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
108-90-7	Chlorobenzene	680	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
67-66-3	Chloroform	2,900	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
124-48-1	Dibromochloromethane	1,300	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-34-3	1,1-Dichloroethane	1,700	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
107-06-2	1,2-Dichloroethane	1,800	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-35-4	1,1-Dichloroethene	1,500	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
156-59-2	cis-1,2-Dichloroethene	1,200	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
156-60-5	trans-1,2-Dichloroethene	3,100	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
78-87-5	1,2-Dichloropropane	1,100	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
	cis-1,3-Dichloropropene	1,400	< 0.0019	< 0.0018	< 0.0017	< 0.0026	< 0.002	< 0.0021	< 0.0019	< 0.0019	< 0.0021
10061-02-6	trans-1,3-Dichloropropene	1,400	< 0.0019	< 0.0018	< 0.0017	< 0.0026	< 0.002	< 0.0021	< 0.0019	< 0.0019	< 0.0021
100-41-4	Ethylbenzene	400	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-09-2	Methylene chloride	2,400	< 0.0094	< 0.0088	< 0.0087	< 0.013	< 0.0099	< 0.01	< 0.0095	< 0.0097	< 0.01
1634-04-4	Methyl tert-butyl ether	8,800	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
100-42-5	Styrene	1,500	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
127-18-4	Tetrachloroethene	240	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
108-88-3	Toluene	650	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
71-55-6	1,1,1-Trichloroethane	1,200	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
79-00-5	1,1,2-Trichloroethane	1,800	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
79-01-6	Trichloroethene	1,300	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
75-01-4	Vinyl chloride	1,200	< 0.0047	< 0.0044	< 0.0043	< 0.0064	< 0.005	< 0.0052	< 0.0048	< 0.0048	< 0.0052
1330-20-7	Xylenes, Total	320	< 0.014	< 0.013	< 0.013	< 0.019	< 0.015	< 0.016	< 0.014	< 0.014	< 0.015

Soil Saturation Limits for Chemicals With Melting Point < 30°C CAS No. Analyte (C_{sat}) VOC 67-64-1 100,000 < 0.071 < 0.096 < 0.077 Acetone 71-43-2 870 < 0.0047 < 0.0064 < 0.0051 Benzene 75-27-4 Bromodichloromethane 3,000 < 0.0047 < 0.0064 < 0.0051 75-25-2 Bromoform 1,900 < 0.0047 < 0.0064 < 0.0051 74-83-9 < 0.0095 < 0.013 Bromomethane 3,200 < 0.01 75-15-0 Carbon disulfide 720 < 0.047 < 0.064 < 0.051 56-23-5 Carbon tetrachloride 1,100 < 0.0047 < 0.0064 < 0.0051 108-90-7 Chlorobenzene 680 < 0.0047 < 0.0064 < 0.0051 67-66-3 2,900 < 0.0047 < 0.0064 < 0.0051 Chloroform 124-48-1 Dibromochloromethane 1,300 < 0.0047 < 0.0064 < 0.0051 75-34-3 < 0.0047 < 0.0064 < 0.0051 1,1-Dichloroethane 1.700 107-06-2 1,2-Dichloroethane 1,800 < 0.0047 < 0.0064 < 0.0051 75-35-4 1,1-Dichloroethene 1,500 < 0.0047 < 0.0064 < 0.0051 156-59-2 1,200 < 0.0047 0.18 < 0.0051 cis-1,2-Dichloroethene trans-1,2-Dichloroethene < 0.0047 < 0.0051 156-60-5 3,100 < 0.0064 78-87-5 1,2-Dichloropropane 1,100 < 0.0047 < 0.0064 < 0.0051 1,400 < 0.0019 < 0.0026 < 0.0021 10061-01-5 cis-1,3-Dichloropropene 10061-02-6 trans-1,3-Dichloropropene 1,400 < 0.0019 < 0.0026 < 0.0021 100-41-4 Ethylbenzene 400 < 0.0047 < 0.0064 < 0.0051 75-09-2 Methylene chloride 2,400 < 0.0095 < 0.013 < 0.01 1634-04-4 Methyl tert-butyl ether 8,800 < 0.0047 < 0.0064 < 0.0051 100-42-5 Styrene 1,500 < 0.0047 < 0.0064 < 0.0051 240 < 0.0047 < 0.0064 127-18-4 Tetrachloroethene < 0.0051 108-88-3 650 < 0.0047 < 0.0064 < 0.0051 Toluene 71-55-6 1,1,1-Trichloroethane 1,200 < 0.0047 < 0.0064 < 0.0051 79-00-5 < 0.0047 < 0.0064 < 0.0051 1,1,2-Trichloroethane 1,800 < 0.0047 0.0057 79-01-6 Trichloroethene 1,300 < 0.0064 75-01-4 Vinyl chloride 1,200 < 0.0047 0.023 < 0.0051 1330-20-7 Xylenes, Total 320 < 0.014 < 0.019 < 0.015

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
VOC	Vinyl chloride	KP7	0.023	0.01	SCGIR Class I
		KP1B	12	13.0/11.3	Residential Ingestion
		KP3A	14	13.0	Within MSA Background
INORG	Arsenic	KP6B	12	11.3	Outside MSA Background
		KP7	17		
		KP8	20		
INODC	Danissas	KP3A	300	110	Within MSA Background
INORG	Barium	KP8	210	122	Outside MSA Background
		KP1A	28	16.2	Within MSA Background
		KP1B	21	13.0	Outside MSA Background
		KP2A	22		<u> </u>
		KP3A	28		
		KP3B	30		
INORG	Chromium	KP4	67		
		KP5	27		
		KP6A	29		
		KP6B	20		
		KP7	20		
		KP8	28		
		KP1A	23	20.9	Outside MSA Background
INIODG		KP6A	27		<u> </u>
INORG	Lead	KP7	25		
		KP8	25		
INODC	C -1 :	KP7	1.4	0.48	Within MSA Background
INORG	Selenium			0.37	Outside MSA Background

APPENDIX 4 LABORATORY DATA SHEETS

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

STAT Project No: 10050355

May 27, 2010

K-Plus Environmental, Inc. 15 Spinning Wheel Drive Suite 320

Hinsdale, IL 60521

Telephone: (312) 207-1600 Fax: (312) 831-2191

RE: 1709LIL, Blakeslee, Cicero, IL

Dear Jessica Madsen:

STAT Analysis received 14 samples for the referenced project on 5/13/2010 11:30:00 AM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Catia Giannini

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

Date: May 27, 2010

Client: K-Plus Environmental, Inc.
Project: 1709LIL, Blakeslee, Cicero, IL

Lab Order: 10050355

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
10050355-001A	KP1A		5/13/2010 8:15:00 AM	5/13/2010
10050355-001B	KP1A		5/13/2010 8:15:00 AM	5/13/2010
10050355-002A	KP1B		5/13/2010 8:15:00 AM	5/13/2010
10050355-002B	KP1B		5/13/2010 8:15:00 AM	5/13/2010
10050355-003A	KP2A		5/13/2010 8:30:00 AM	5/13/2010
10050355-003B	KP2A		5/13/2010 8:30:00 AM	5/13/2010
10050355-004A	KP2B		5/13/2010 8:30:00 AM	5/13/2010
10050355-004B	KP2B		5/13/2010 8:30:00 AM	5/13/2010
10050355-005A	KP3A		5/13/2010 8:45:00 AM	5/13/2010
10050355-005B	KP3A		5/13/2010 8:45:00 AM	5/13/2010
10050355-006A	KP3B		5/13/2010 8:45:00 AM	5/13/2010
10050355-006B	KP3B		5/13/2010 8:45:00 AM	5/13/2010
10050355-007A	KP4		5/13/2010 9:30:00 AM	5/13/2010
10050355-007B	KP4		5/13/2010 9:30:00 AM	5/13/2010
10050355-008A	KP5		5/13/2010 9:45:00 AM	5/13/2010
10050355-008B	KP5		5/13/2010 9:45:00 AM	5/13/2010
10050355-009A	KP6A		5/13/2010 10:00:00 AM	5/13/2010
10050355-009B	KP6A		5/13/2010 10:00:00 AM	5/13/2010
10050355-010A	KP6B		5/13/2010 10:00:00 AM	5/13/2010
10050355-010B	KP6B		5/13/2010 10:00:00 AM	5/13/2010
10050355-011A	KP7		5/13/2010 10:30:00 AM	5/13/2010
10050355-011B	KP7		5/13/2010 10:30:00 AM	5/13/2010
10050355-012A	KP8		5/13/2010 10:45:00 AM	5/13/2010
10050355-012B	KP8		5/13/2010 10:45:00 AM	5/13/2010
10050355-013A	KP9		5/13/2010 11:00:00 AM	5/13/2010
10050355-014A	KP3-Dirty TACO		5/13/2010 11:00:00 AM	5/13/2010

Date: May 27, 2010

CLIENT: K-Plus Environmental, Inc. **Project:** 1709LIL, Blakeslee, Cicero, IL

Lab Order: 10050355

CASE NARRATIVE

Geotechnical analysis of sample KP9 (10050355-013A) was conducted at the University of Illinois at Chicago, Department of Civil Engineering under the supervision of Dr. Krishna Reddy.

The metals serial dilution (SD) prepared from sample KP2A (10050355-003) had relative percent difference (RPD) outside of control limits for Chromium (19% RPD, QC limits <10%).

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-001 **Client Sample ID:** KP1A

Collection Date: 5/13/2010 8:15:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.029	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW30	50B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	7.4	1.1	mg/Kg-dry	10	5/18/2010
Barium	65	1.1	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.54	mg/Kg-dry	10	5/18/2010
Chromium	28	4.3	mg/Kg-dry	40	5/18/2010
Lead	23	0.54	mg/Kg-dry	10	5/18/2010
Selenium	ND	1.1	mg/Kg-dry	10	5/18/2010
Silver	ND	1.1	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM (SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	0.092	0.031	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	0.045	0.031	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	0.065	0.031	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	0.036	0.031	mg/Kg-dry	1	5/19/2010
Chrysene	0.084	0.031	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluoranthene	0.17	0.031	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.031	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	5/19/2010
Phenanthrene	0.1	0.031	mg/Kg-dry	1	5/19/2010
Pyrene	0.14	0.031	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.07	mg/Kg-dry	1	5/17/2010
Benzene	ND	0.0047	mg/Kg-dry	1	5/17/2010
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
Bromoform	ND	0.0047	mg/Kg-dry	1	5/17/2010
Bromomethane	ND	0.0094	mg/Kg-dry	1	5/17/2010
2-Butanone	ND	0.07	mg/Kg-dry	1	5/17/2010
Carbon disulfide	ND	0.047	mg/Kg-dry	1	5/17/2010
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	5/17/2010
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	5/17/2010
Chloroethane	ND	0.0094	mg/Kg-dry	1	5/17/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-001

Client Sample ID: KP1A

Collection Date: 5/13/2010 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0047	mg/Kg-dry	1	5/17/2010
Chloromethane	ND	0.0094	mg/Kg-dry	1	5/17/2010
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/17/2010
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/17/2010
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	5/17/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/17/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/17/2010
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	5/17/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	5/17/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	5/17/2010
Methylene chloride	ND	0.0094	mg/Kg-dry	1	5/17/2010
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	5/17/2010
Styrene	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	5/17/2010
Toluene	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	5/17/2010
Trichloroethene	ND	0.0047	mg/Kg-dry	1	5/17/2010
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	5/17/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	5/17/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	21.0	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-002

Client Sample ID: KP1B

Collection Date: 5/13/2010 8:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.028	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW30	950B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	12	0.93	mg/Kg-dry	10	5/18/2010
Barium	52	0.93	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.47	mg/Kg-dry	10	5/18/2010
Chromium	21	3.7	mg/Kg-dry	40	5/18/2010
Lead	19	0.47	mg/Kg-dry	10	5/18/2010
Selenium	ND	0.93	mg/Kg-dry	10	5/18/2010
Silver	ND	0.93	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM ((SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.029	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.029	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.029	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.029	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.066	mg/Kg-dry	1	5/17/2010
Benzene	ND	0.0044	mg/Kg-dry	1	5/17/2010
Bromodichloromethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
Bromoform	ND	0.0044	mg/Kg-dry	1	5/17/2010
Bromomethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
2-Butanone	ND	0.066	mg/Kg-dry	1	5/17/2010
Carbon disulfide	ND	0.044	mg/Kg-dry	1	5/17/2010
Carbon tetrachloride	ND	0.0044	mg/Kg-dry	1	5/17/2010
Chlorobenzene	ND	0.0044	mg/Kg-dry	1	5/17/2010
Chloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
Chio. Continue	ND	0.0000	ing/itg-dry	•	3/11/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

Page 6 of 31

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-002

Client Sample ID: KP1B

Collection Date: 5/13/2010 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0044	mg/Kg-dry	1	5/17/2010
Chloromethane	ND	0.0088	mg/Kg-dry	1	5/17/2010
Dibromochloromethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,2-Dichloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethene	ND	0.0044	mg/Kg-dry	1	5/17/2010
cis-1,2-Dichloroethene	ND	0.0044	mg/Kg-dry	1	5/17/2010
trans-1,2-Dichloroethene	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,2-Dichloropropane	ND	0.0044	mg/Kg-dry	1	5/17/2010
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	5/17/2010
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	5/17/2010
Ethylbenzene	ND	0.0044	mg/Kg-dry	1	5/17/2010
2-Hexanone	ND	0.018	mg/Kg-dry	1	5/17/2010
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	5/17/2010
Methylene chloride	ND	0.0088	mg/Kg-dry	1	5/17/2010
Methyl tert-butyl ether	ND	0.0044	mg/Kg-dry	1	5/17/2010
Styrene	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,1,2,2-Tetrachloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
Tetrachloroethene	ND	0.0044	mg/Kg-dry	1	5/17/2010
Toluene	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,1,1-Trichloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
1,1,2-Trichloroethane	ND	0.0044	mg/Kg-dry	1	5/17/2010
Trichloroethene	ND	0.0044	mg/Kg-dry	1	5/17/2010
Vinyl chloride	ND	0.0044	mg/Kg-dry	1	5/17/2010
Xylenes, Total	ND	0.013	mg/Kg-dry	1	5/17/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	14.9	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-003

Client Sample ID: KP2A

Collection Date: 5/13/2010 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Preg	Date: 5/17/201 0	Analyst: VA
Mercury	ND	0.028	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW3	.050B) Pred	Date: 5/17/201 0	Analyst: JG
Arsenic	7	1.1	mg/Kg-dry	10	5/17/2010
Barium	49	1.1	mg/Kg-dry	10	5/17/2010
Cadmium	ND	0.54	mg/Kg-dry	10	5/17/2010
Chromium	22	1.1	mg/Kg-dry	10	5/17/2010
Lead	18	0.54	mg/Kg-dry	10	5/17/2010
Selenium	ND	1.1	mg/Kg-dry	10	5/17/2010
Silver	ND	1.1	mg/Kg-dry	10	5/17/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 5/17/201 0	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Anthracene	0.047	0.031	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	0.09	0.031	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	0.041	0.031	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	0.05	0.031	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	0.048	0.031	mg/Kg-dry	1	5/19/2010
Chrysene	0.086	0.031	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluoranthene	0.2	0.031	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.031	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	5/19/2010
Phenanthrene	0.19	0.031	mg/Kg-dry	1	5/19/2010
Pyrene	0.15	0.031	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	3 Prep	Date: 5/14/201 0	Analyst: PS
Acetone	ND	0.065	mg/Kg-dry	1	5/17/2010
Benzene	ND	0.0043	mg/Kg-dry	1	5/17/2010
Bromodichloromethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
Bromoform	ND	0.0043	mg/Kg-dry	1	5/17/2010
Bromomethane	ND	0.0087	mg/Kg-dry	1	5/17/2010
2-Butanone	ND	0.065	mg/Kg-dry	1	5/17/2010
Carbon disulfide	ND	0.043	mg/Kg-dry	1	5/17/2010
Carbon tetrachloride	ND	0.0043	mg/Kg-dry	1	5/17/2010
Chlorobenzene	ND	0.0043	mg/Kg-dry	1	5/17/2010
Chloroethane	ND	0.0087	mg/Kg-dry	1	5/17/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

5 - Spike Recovery outside accepted recovery min

R - RPD outside accepted recovery limits

 \boldsymbol{E} - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-003 Client Sample ID: KP2A

Collection Date: 5/13/2010 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0043	mg/Kg-dry	1	5/17/2010
Chloromethane	ND	0.0087	mg/Kg-dry	1	5/17/2010
Dibromochloromethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,2-Dichloroethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethene	ND	0.0043	mg/Kg-dry	1	5/17/2010
cis-1,2-Dichloroethene	ND	0.0043	mg/Kg-dry	1	5/17/2010
trans-1,2-Dichloroethene	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,2-Dichloropropane	ND	0.0043	mg/Kg-dry	1	5/17/2010
cis-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	5/17/2010
trans-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	5/17/2010
Ethylbenzene	ND	0.0043	mg/Kg-dry	1	5/17/2010
2-Hexanone	ND	0.017	mg/Kg-dry	1	5/17/2010
4-Methyl-2-pentanone	ND	0.017	mg/Kg-dry	1	5/17/2010
Methylene chloride	ND	0.0087	mg/Kg-dry	1	5/17/2010
Methyl tert-butyl ether	ND	0.0043	mg/Kg-dry	1	5/17/2010
Styrene	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,1,2,2-Tetrachloroethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
Tetrachloroethene	ND	0.0043	mg/Kg-dry	1	5/17/2010
Toluene	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,1,1-Trichloroethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
1,1,2-Trichloroethane	ND	0.0043	mg/Kg-dry	1	5/17/2010
Trichloroethene	ND	0.0043	mg/Kg-dry	1	5/17/2010
Vinyl chloride	ND	0.0043	mg/Kg-dry	1	5/17/2010
Xylenes, Total	ND	0.013	mg/Kg-dry	1	5/17/2010
Percent Moisture	D297	' 4	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.5	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-004

Client Sample ID: KP2B

Collection Date: 5/13/2010 8:30:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.029	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW30	50B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	1.8	0.27	mg/Kg-dry	10	5/18/2010
Barium	13	0.27	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.14	mg/Kg-dry	10	5/18/2010
Chromium	5.8	0.27	mg/Kg-dry	10	5/18/2010
Lead	4.6	0.14	mg/Kg-dry	10	5/18/2010
Selenium	ND	0.27	mg/Kg-dry	10	5/18/2010
Silver	ND	0.27	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM (SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.03	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.03	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.097	mg/Kg-dry	1	5/19/2010
Benzene	ND	0.0064	mg/Kg-dry	1	5/19/2010
Bromodichloromethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
Bromoform	ND	0.0064	mg/Kg-dry	1	5/19/2010
Bromomethane	ND	0.013	mg/Kg-dry	1	5/19/2010
2-Butanone	ND	0.097	mg/Kg-dry	1	5/19/2010
Carbon disulfide	ND	0.064	mg/Kg-dry	1	5/19/2010
Carbon tetrachloride	ND	0.0064	mg/Kg-dry	1	5/19/2010
Chlorobenzene	ND	0.0064	mg/Kg-dry	1	5/19/2010
Chloroethane	ND	0.013	mg/Kg-dry	1	5/19/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-004

Client Sample ID: KP2B

Collection Date: 5/13/2010 8:30:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0064	mg/Kg-dry	1	5/19/2010
Chloromethane	ND	0.013	mg/Kg-dry	1	5/19/2010
Dibromochloromethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,2-Dichloroethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethene	ND	0.0064	mg/Kg-dry	1	5/19/2010
cis-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	5/19/2010
trans-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,2-Dichloropropane	ND	0.0064	mg/Kg-dry	1	5/19/2010
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	5/19/2010
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	5/19/2010
Ethylbenzene	ND	0.0064	mg/Kg-dry	1	5/19/2010
2-Hexanone	ND	0.026	mg/Kg-dry	1	5/19/2010
4-Methyl-2-pentanone	ND	0.026	mg/Kg-dry	1	5/19/2010
Methylene chloride	ND	0.013	mg/Kg-dry	1	5/19/2010
Methyl tert-butyl ether	ND	0.0064	mg/Kg-dry	1	5/19/2010
Styrene	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,1,2,2-Tetrachloroethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
Tetrachloroethene	ND	0.0064	mg/Kg-dry	1	5/19/2010
Toluene	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,1,1-Trichloroethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
1,1,2-Trichloroethane	ND	0.0064	mg/Kg-dry	1	5/19/2010
Trichloroethene	ND	0.0064	mg/Kg-dry	1	5/19/2010
Vinyl chloride	ND	0.0064	mg/Kg-dry	1	5/19/2010
Xylenes, Total	ND	0.019	mg/Kg-dry	1	5/19/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.2	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

ii - Holding time exec

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-005

Client Sample ID: KP3A

Collection Date: 5/13/2010 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW3050B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	14	1	mg/Kg-dry	10	5/18/2010
Barium	300	1	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.5	mg/Kg-dry	10	5/18/2010
Chromium	28	4	mg/Kg-dry	40	5/18/2010
Lead	19	0.5	mg/Kg-dry	10	5/18/2010
Selenium	ND	1	mg/Kg-dry	10	5/18/2010
Silver	ND	1	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM (SW	3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.03	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.03	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.075	mg/Kg-dry	1	5/17/2010
Benzene	ND	0.005	mg/Kg-dry	1	5/17/2010
Bromodichloromethane	ND	0.005	mg/Kg-dry	1	5/17/2010
Bromoform	ND	0.005	mg/Kg-dry	1	5/17/2010
Bromomethane	ND	0.0099	mg/Kg-dry	1	5/17/2010
2-Butanone	ND	0.075	mg/Kg-dry	1	5/17/2010
Carbon disulfide	ND	0.05	mg/Kg-dry	1	5/17/2010
Carbon tetrachloride	ND	0.005	mg/Kg-dry	1	5/17/2010
Chlorobenzene	ND	0.005	mg/Kg-dry	1	5/17/2010
Chloroethane	ND	0.0099	mg/Kg-dry	1	5/17/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accepted acceptant limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-005

Client Sample ID: KP3A

Collection Date: 5/13/2010 8:45:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.005	mg/Kg-dry	1	5/17/2010
Chloromethane	ND	0.0099	mg/Kg-dry	1	5/17/2010
Dibromochloromethane	ND	0.005	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethane	ND	0.005	mg/Kg-dry	1	5/17/2010
1,2-Dichloroethane	ND	0.005	mg/Kg-dry	1	5/17/2010
1,1-Dichloroethene	ND	0.005	mg/Kg-dry	1	5/17/2010
cis-1,2-Dichloroethene	ND	0.005	mg/Kg-dry	1	5/17/2010
trans-1,2-Dichloroethene	ND	0.005	mg/Kg-dry	1	5/17/2010
1,2-Dichloropropane	ND	0.005	mg/Kg-dry	1	5/17/2010
cis-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	5/17/2010
trans-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	5/17/2010
Ethylbenzene	ND	0.005	mg/Kg-dry	1	5/17/2010
2-Hexanone	ND	0.02	mg/Kg-dry	1	5/17/2010
4-Methyl-2-pentanone	ND	0.02	mg/Kg-dry	1	5/17/2010
Methylene chloride	ND	0.0099	mg/Kg-dry	1	5/17/2010
Methyl tert-butyl ether	ND	0.005	mg/Kg-dry	1	5/17/2010
Styrene	ND	0.005	mg/Kg-dry	1	5/17/2010
1,1,2,2-Tetrachloroethane	ND	0.005	mg/Kg-dry	1	5/17/2010
Tetrachloroethene	ND	0.005	mg/Kg-dry	1	5/17/2010
Toluene	ND	0.005	mg/Kg-dry	1	5/17/2010
1,1,1-Trichloroethane	ND	0.005	mg/Kg-dry	1	5/17/2010
1,1,2-Trichloroethane	ND	0.005	mg/Kg-dry	1	5/17/2010
Trichloroethene	ND	0.005	mg/Kg-dry	1	5/17/2010
Vinyl chloride	ND	0.005	mg/Kg-dry	1	5/17/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	5/17/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.1	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-006 Client Sample ID: KP3B

Collection Date: 5/13/2010 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW60	020 (SW305	50B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	6.7	1.2	mg/Kg-dry	10	5/18/2010
Barium	73	1.2	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.61	mg/Kg-dry	10	5/18/2010
Chromium	30	1.2	mg/Kg-dry	10	5/18/2010
Lead	18	0.61	mg/Kg-dry	10	5/18/2010
Selenium	ND	1.2	mg/Kg-dry	10	5/18/2010
Silver	ND	1.2	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM (S	SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.031	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.031	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.078	mg/Kg-dry	1	5/19/2010
Benzene	ND	0.0052	mg/Kg-dry	1	5/19/2010
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
Bromoform	ND	0.0052	mg/Kg-dry	1	5/19/2010
Bromomethane	ND	0.01	mg/Kg-dry	1	5/19/2010
2-Butanone	ND	0.078	mg/Kg-dry	1	5/19/2010
Carbon disulfide	ND	0.052	mg/Kg-dry	1	5/19/2010
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	5/19/2010
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	5/19/2010
Chloroethane	ND	0.01	mg/Kg-dry	1	5/19/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-006 Client Sample ID: KP3B

Collection Date: 5/13/2010 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep I	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0052	mg/Kg-dry	1	5/19/2010
Chloromethane	ND	0.01	mg/Kg-dry	1	5/19/2010
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/19/2010
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/19/2010
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	5/19/2010
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/19/2010
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/19/2010
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	5/19/2010
2-Hexanone	ND	0.021	mg/Kg-dry	1	5/19/2010
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	5/19/2010
Methylene chloride	ND	0.01	mg/Kg-dry	1	5/19/2010
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	5/19/2010
Styrene	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	5/19/2010
Toluene	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	5/19/2010
Trichloroethene	ND	0.0052	mg/Kg-dry	1	5/19/2010
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	5/19/2010
Xylenes, Total	ND	0.016	mg/Kg-dry	1	5/19/2010
Percent Moisture	D297	' 4	Prep I	Date: 5/13/2010	Analyst: RW
Percent Moisture	20.0	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-007

Client Sample ID: KP4

Collection Date: 5/13/2010 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.029	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	5.5	1.1	mg/Kg-dry	10	5/18/2010
Barium	47	1.1	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.56	mg/Kg-dry	10	5/18/2010
Chromium	67	1.1	mg/Kg-dry	10	5/18/2010
Lead	15	0.56	mg/Kg-dry	10	5/18/2010
Selenium	ND	1.1	mg/Kg-dry	10	5/18/2010
Silver	ND	1.1	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.031	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.031	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.071	mg/Kg-dry	1	5/18/2010
Benzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromodichloromethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromoform	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromomethane	ND	0.0095	mg/Kg-dry	1	5/18/2010
2-Butanone	ND	0.071	mg/Kg-dry	1	5/18/2010
Carbon disulfide	ND	0.048	mg/Kg-dry	1	5/18/2010
Carbon tetrachloride	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chlorobenzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chloroethane	ND	0.0095	mg/Kg-dry	1	5/18/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-007

Client Sample ID: KP4

Collection Date: 5/13/2010 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chloromethane	ND	0.0095	mg/Kg-dry	1	5/18/2010
Dibromochloromethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,2-Dichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
cis-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
trans-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,2-Dichloropropane	ND	0.0048	mg/Kg-dry	1	5/18/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/18/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/18/2010
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	5/18/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	5/18/2010
Methylene chloride	ND	0.0095	mg/Kg-dry	1	5/18/2010
Methyl tert-butyl ether	ND	0.0048	mg/Kg-dry	1	5/18/2010
Styrene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,2,2-Tetrachloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Tetrachloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Toluene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,1-Trichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,2-Trichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Trichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Vinyl chloride	ND	0.0048	mg/Kg-dry	1	5/18/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	5/18/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	22.4	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-008

Client Sample ID: KP5

Collection Date: 5/13/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW60	020 (SW305	i0B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	9.2	1	mg/Kg-dry	10	5/18/2010
Barium	44	1	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.5	mg/Kg-dry	10	5/18/2010
Chromium	27	4	mg/Kg-dry	40	5/18/2010
Lead	17	0.5	mg/Kg-dry	10	5/18/2010
Selenium	ND	1	mg/Kg-dry	10	5/18/2010
Silver	ND	1	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM (S	SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.03	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.03	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.072	mg/Kg-dry	1	5/18/2010
Benzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromodichloromethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromoform	ND	0.0048	mg/Kg-dry	1	5/18/2010
Bromomethane	ND	0.0097	mg/Kg-dry	1	5/18/2010
2-Butanone	ND	0.072	mg/Kg-dry	1	5/18/2010
Carbon disulfide	ND	0.048	mg/Kg-dry	1	5/18/2010
Carbon tetrachloride	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chlorobenzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chloroethane	ND	0.0097	mg/Kg-dry	1	5/18/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-008

Client Sample ID: KP5

Collection Date: 5/13/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0048	mg/Kg-dry	1	5/18/2010
Chloromethane	ND	0.0097	mg/Kg-dry	1	5/18/2010
Dibromochloromethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,2-Dichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
cis-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
trans-1,2-Dichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,2-Dichloropropane	ND	0.0048	mg/Kg-dry	1	5/18/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/18/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/18/2010
Ethylbenzene	ND	0.0048	mg/Kg-dry	1	5/18/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	5/18/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	5/18/2010
Methylene chloride	ND	0.0097	mg/Kg-dry	1	5/18/2010
Methyl tert-butyl ether	ND	0.0048	mg/Kg-dry	1	5/18/2010
Styrene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,2,2-Tetrachloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Tetrachloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Toluene	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,1-Trichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
1,1,2-Trichloroethane	ND	0.0048	mg/Kg-dry	1	5/18/2010
Trichloroethene	ND	0.0048	mg/Kg-dry	1	5/18/2010
Vinyl chloride	ND	0.0048	mg/Kg-dry	1	5/18/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	5/18/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.9	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-009

Client Sample ID: KP6A

Collection Date: 5/13/2010 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Pre	p Date: 5/17/201 0	Analyst: VA
Mercury	ND	0.029	mg/Kg-dr	y 1	5/17/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Pre	p Date: 5/17/2010	Analyst: JG
Arsenic	5.3	1.2	, mg/Kg-dr	•	5/18/2010
Barium	70	1.2	mg/Kg-dr	y 10	5/18/2010
Cadmium	ND	0.59	mg/Kg-dr	y 10	5/18/2010
Chromium	29	4.7	mg/Kg-dr	y 40	5/18/2010
Lead	27	0.59	mg/Kg-dr	y 10	5/18/2010
Selenium	ND	1.2	mg/Kg-dr	y 10	5/18/2010
Silver	ND	1.2	mg/Kg-dr	y 10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Pre	p Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.04	mg/Kg-dr	•	5/20/2010
Acenaphthylene	ND	0.04	mg/Kg-dr	y 10	5/20/2010
Anthracene	ND	0.04	mg/Kg-dr		5/20/2010
Benz(a)anthracene	ND	0.04	mg/Kg-dr		5/20/2010
Benzo(a)pyrene	ND	0.04	mg/Kg-dr		5/20/2010
Benzo(b)fluoranthene	ND	0.04	mg/Kg-dr		5/20/2010
Benzo(g,h,i)perylene	ND	0.04	mg/Kg-dr		5/20/2010
Benzo(k)fluoranthene	ND	0.04	mg/Kg-dr		5/20/2010
Chrysene	ND	0.04	mg/Kg-dr		5/20/2010
Dibenz(a,h)anthracene	ND	0.04	mg/Kg-dr	y 10	5/20/2010
Fluoranthene	ND	0.04	mg/Kg-dr		5/20/2010
Fluorene	ND	0.04	mg/Kg-dr		5/20/2010
Indeno(1,2,3-cd)pyrene	ND	0.04	mg/Kg-dr	y 10	5/20/2010
Naphthalene	ND	0.04	mg/Kg-dr		5/20/2010
Phenanthrene	ND	0.04	mg/Kg-dr		5/20/2010
Pyrene	ND	0.04	mg/Kg-dr		5/20/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	B Pre	p Date: 5/14/2010	Analyst: PS
Acetone	ND	0.077	mg/Kg-dr	·	5/18/2010
Benzene	ND	0.0052	mg/Kg-dr		5/18/2010
Bromodichloromethane	ND	0.0052	mg/Kg-dr		5/18/2010
Bromoform	ND	0.0052	mg/Kg-dr		5/18/2010
Bromomethane	ND	0.01	mg/Kg-dr	,	5/18/2010
2-Butanone	ND	0.077	mg/Kg-dr	•	5/18/2010
Carbon disulfide	ND	0.052	mg/Kg-dr		5/18/2010
Carbon tetrachloride	ND	0.0052	mg/Kg-dr		5/18/2010
Chlorobenzene	ND	0.0052	mg/Kg-dr	,	5/18/2010
Chloroethane	ND	0.01	mg/Kg-dr		5/18/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

HT - Sample received past holding time
* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-009

Client Sample ID: KP6A

Collection Date: 5/13/2010 10:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5035/8260B Prep Da		Date: 5/14/2010	Analyst: PS	
Chloroform	ND	0.0052	mg/Kg-dry	1	5/18/2010
Chloromethane	ND	0.01	mg/Kg-dry	1	5/18/2010
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/18/2010
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/18/2010
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	5/18/2010
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/18/2010
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/18/2010
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	5/18/2010
2-Hexanone	ND	0.021	mg/Kg-dry	1	5/18/2010
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	5/18/2010
Methylene chloride	ND	0.01	mg/Kg-dry	1	5/18/2010
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	5/18/2010
Styrene	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	5/18/2010
Toluene	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	5/18/2010
Trichloroethene	ND	0.0052	mg/Kg-dry	1	5/18/2010
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	5/18/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	5/18/2010
Percent Moisture	D297	' 4	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.8	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-010

Client Sample ID: KP6B

Collection Date: 5/13/2010 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.028	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	12	1.1	mg/Kg-dry	10	5/18/2010
Barium	25	1.1	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.57	mg/Kg-dry	10	5/18/2010
Chromium	20	1.1	mg/Kg-dry	10	5/18/2010
Lead	18	0.57	mg/Kg-dry	10	5/18/2010
Selenium	ND	1.1	mg/Kg-dry	10	5/18/2010
Silver	ND	1.1	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.029	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.029	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.029	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.029	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.029	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.029	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.029	mg/Kg-dry	1	5/19/2010
Phenanthrene	0.031	0.029	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.029	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.071	mg/Kg-dry	1	5/19/2010
Benzene	ND	0.0047	mg/Kg-dry	1	5/19/2010
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
Bromoform	ND	0.0047	mg/Kg-dry	1	5/19/2010
Bromomethane	ND	0.0095	mg/Kg-dry	1	5/19/2010
2-Butanone	ND	0.071	mg/Kg-dry	1	5/19/2010
Carbon disulfide	ND	0.047	mg/Kg-dry	1	5/19/2010
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	5/19/2010
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	5/19/2010
Chloroethane	ND	0.0095	mg/Kg-dry	1	5/19/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

_

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-010

Client Sample ID: KP6B

Collection Date: 5/13/2010 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5035/8260B Prep Da		Date: 5/14/2010	Analyst: PS	
Chloroform	ND	0.0047	mg/Kg-dry	1	5/19/2010
Chloromethane	ND	0.0095	mg/Kg-dry	1	5/19/2010
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/19/2010
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/19/2010
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	5/19/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/19/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	5/19/2010
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	5/19/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	5/19/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	5/19/2010
Methylene chloride	ND	0.0095	mg/Kg-dry	1	5/19/2010
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	5/19/2010
Styrene	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	5/19/2010
Toluene	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	5/19/2010
Trichloroethene	ND	0.0047	mg/Kg-dry	1	5/19/2010
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	5/19/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	5/19/2010
Percent Moisture	D297	' 4	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	16.7	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accomted accovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-011 Client Sample ID: KP7

Collection Date: 5/13/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW60	020 (SW3	050B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	17	1.2	mg/Kg-dry	10	5/18/2010
Barium	33	1.2	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.61	mg/Kg-dry	10	5/18/2010
Chromium	20	1.2	mg/Kg-dry	10	5/18/2010
Lead	25	0.61	mg/Kg-dry	10	5/18/2010
Selenium	1.4	1.2	mg/Kg-dry	10	5/18/2010
Silver	ND	1.2	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM	(SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Chrysene	ND	0.031	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	5/19/2010
Fluorene	ND	0.031	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.031	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.096	mg/Kg-dry	1	5/18/2010
Benzene	ND	0.0064	mg/Kg-dry	1	5/18/2010
Bromodichloromethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
Bromoform	ND	0.0064	mg/Kg-dry	1	5/18/2010
Bromomethane	ND	0.013	mg/Kg-dry	1	5/18/2010
2-Butanone	ND	0.096	mg/Kg-dry	1	5/18/2010
Carbon disulfide	ND	0.064	mg/Kg-dry	1	5/18/2010
Carbon tetrachloride	ND	0.0064	mg/Kg-dry	1	5/18/2010
Chlorobenzene	ND	0.0064	mg/Kg-dry	1	5/18/2010
Chloroethane	ND	0.013	mg/Kg-dry	1	5/18/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-011

Client Sample ID: KP7

Collection Date: 5/13/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5035/8260B Prep D		Date: 5/14/2010	Analyst: PS	
Chloroform	ND	0.0064	mg/Kg-dry	1	5/18/2010
Chloromethane	ND	0.013	mg/Kg-dry	1	5/18/2010
Dibromochloromethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,2-Dichloroethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethene	ND	0.0064	mg/Kg-dry	1	5/18/2010
cis-1,2-Dichloroethene	0.18	0.0064	mg/Kg-dry	1	5/18/2010
trans-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,2-Dichloropropane	ND	0.0064	mg/Kg-dry	1	5/18/2010
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	5/18/2010
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	5/18/2010
Ethylbenzene	ND	0.0064	mg/Kg-dry	1	5/18/2010
2-Hexanone	ND	0.026	mg/Kg-dry	1	5/18/2010
4-Methyl-2-pentanone	ND	0.026	mg/Kg-dry	1	5/18/2010
Methylene chloride	ND	0.013	mg/Kg-dry	1	5/18/2010
Methyl tert-butyl ether	ND	0.0064	mg/Kg-dry	1	5/18/2010
Styrene	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,1,2,2-Tetrachloroethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
Tetrachloroethene	ND	0.0064	mg/Kg-dry	1	5/18/2010
Toluene	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,1,1-Trichloroethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
1,1,2-Trichloroethane	ND	0.0064	mg/Kg-dry	1	5/18/2010
Trichloroethene	ND	0.0064	mg/Kg-dry	1	5/18/2010
Vinyl chloride	0.023	0.0064	mg/Kg-dry	1	5/18/2010
Xylenes, Total	ND	0.019	mg/Kg-dry	1	5/18/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	20.5	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D DDD systaids assemted massycary limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-012

Lab Order:

Client Sample ID: KP8

Collection Date: 5/13/2010 10:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 5/17/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	5/17/2010
Metals by ICP/MS	SW6	020 (SW30)50B) Prep	Date: 5/17/2010	Analyst: JG
Arsenic	20	1.2	mg/Kg-dry	10	5/18/2010
Barium	210	1.2	mg/Kg-dry	10	5/18/2010
Cadmium	ND	0.6	mg/Kg-dry	10	5/18/2010
Chromium	28	4.8	mg/Kg-dry	40	5/18/2010
Lead	25	0.6	mg/Kg-dry	10	5/18/2010
Selenium	ND	1.2	mg/Kg-dry	10	5/18/2010
Silver	ND	1.2	mg/Kg-dry	10	5/18/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 5/17/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Anthracene	0.032	0.03	mg/Kg-dry	1	5/19/2010
Benz(a)anthracene	0.036	0.03	mg/Kg-dry	1	5/19/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	5/19/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Chrysene	0.093	0.03	mg/Kg-dry	1	5/19/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	5/19/2010
Fluorene	0.035	0.03	mg/Kg-dry	1	5/19/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	5/19/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Pyrene	ND	0.03	mg/Kg-dry	1	5/19/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Acetone	ND	0.077	mg/Kg-dry	1	5/18/2010
Benzene	ND	0.0051	mg/Kg-dry	1	5/18/2010
Bromodichloromethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
Bromoform	ND	0.0051	mg/Kg-dry	1	5/18/2010
Bromomethane	ND	0.01	mg/Kg-dry	1	5/18/2010
2-Butanone	ND	0.077	mg/Kg-dry	1	5/18/2010
Carbon disulfide	ND	0.051	mg/Kg-dry	1	5/18/2010
Carbon tetrachloride	ND	0.0051	mg/Kg-dry	1	5/18/2010
Chlorobenzene	ND	0.0051	mg/Kg-dry	1	5/18/2010
Chloroethane	ND	0.01	mg/Kg-dry	1	5/18/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-012

Client Sample ID: KP8

Collection Date: 5/13/2010 10:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 5/14/2010	Analyst: PS
Chloroform	ND	0.0051	mg/Kg-dry	1	5/18/2010
Chloromethane	ND	0.01	mg/Kg-dry	1	5/18/2010
Dibromochloromethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,2-Dichloroethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,1-Dichloroethene	ND	0.0051	mg/Kg-dry	1	5/18/2010
cis-1,2-Dichloroethene	ND	0.0051	mg/Kg-dry	1	5/18/2010
trans-1,2-Dichloroethene	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,2-Dichloropropane	ND	0.0051	mg/Kg-dry	1	5/18/2010
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/18/2010
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	5/18/2010
Ethylbenzene	ND	0.0051	mg/Kg-dry	1	5/18/2010
2-Hexanone	ND	0.021	mg/Kg-dry	1	5/18/2010
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	5/18/2010
Methylene chloride	ND	0.01	mg/Kg-dry	1	5/18/2010
Methyl tert-butyl ether	ND	0.0051	mg/Kg-dry	1	5/18/2010
Styrene	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,1,2,2-Tetrachloroethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
Tetrachloroethene	ND	0.0051	mg/Kg-dry	1	5/18/2010
Toluene	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,1,1-Trichloroethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
1,1,2-Trichloroethane	ND	0.0051	mg/Kg-dry	1	5/18/2010
Trichloroethene	0.0057	0.0051	mg/Kg-dry	1	5/18/2010
Vinyl chloride	ND	0.0051	mg/Kg-dry	1	5/18/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	5/18/2010
Percent Moisture	D297	74	Prep	Date: 5/13/2010	Analyst: RW
Percent Moisture	18.1	0.2	* wt%	1	5/14/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

Page 27 of 31

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-013

Client Sample ID: KP9

Collection Date: 5/13/2010 11:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units DF	Date Analyzed
Dry Bulk Density Dry Bulk Density	D2937 100		*	Prep Date:	Analyst: SUB 5/26/2010
Soil Particle Density Soil Particle Density	D854 163 *		Prep Date: lb/ft ³	Analyst: SUB 5/26/2010	
Organic Carbon Content Fractional Organic Carbon	D2974 4.3	0.01	*	Prep Date: wt%	Analyst: SUB 5/26/2010
Hydraulic Conductivity Hydraulic Conductivity	D5084 1.82 x10-8		*	Prep Date: cm/s	Analyst: SUB 5/26/2010
Moisture Content Moisture Content	D2216 27.0	0.01	*	Prep Date: wt%	Analyst: SUB 5/26/2010
Specific Gravity Specific Gravity	D854 2.62		*	Prep Date:	Analyst: SUB 5/26/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: May 27, 2010 **Date Printed:** May 27, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10050355

Project: 1709LIL, Blakeslee, Cicero, IL

Lab ID: 10050355-014

Client Sample ID: KP3-Dirty TACO

Collection Date: 5/13/2010 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Qua	alifier Units	DF	Date Analyzed
TCLP Mercury	SW13	11/7470A	Prep	Date: 5/14/2010	Analyst: VA
Mercury	ND	0.0002	mg/L	1	5/14/2010
TCLP Metals by ICP/MS	SW13	11/6020 (SW	3005A) Prep	Date: 5/18/2010	Analyst: JG
Arsenic	ND	0.01	mg/L	5	5/18/2010
Barium	0.19	0.05	mg/L	5	5/18/2010
Cadmium	ND	0.005	mg/L	5	5/18/2010
Chromium	ND	0.01	mg/L	5	5/18/2010
Lead	ND	0.0075	mg/L	5	5/19/2010
Selenium	ND	0.01	mg/L	5	5/18/2010
Silver	ND	0.01	mg/L	5	5/18/2010
Cyanide, Reactive	SW7.3.3.2		Prep	Date: 5/17/2010	Analyst: BPJ
Reactive Cyanide	ND	1	mg/Kg	1	5/17/2010
pH (25 °C)	SW9045C		Prep	Date: 5/13/2010	Analyst: MNG
рН	8.5		pH Units	1	5/13/2010
Sulfide, Reactive Reactive Sulfide	SW7.3 ND	3.4.2	Prep mg/Kg	Date: 5/17/2010 1	Analyst: BPJ 5/17/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

Analysis Corporation 2242 W. Harrison, Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 AIHA, NVLAP and NELAP accredited e-mail address: STATinfo@STATAnalysis.com

Results Needed: am/pm 子00 002 200 600 0 900 200 800 _ 0 of Page: Remarks 829840 Preservation Code: A = None B = HNO₃ - Con NaOH $D = H_2SO_4$ E = HCl F = 5035/EnCoreCHAIN OF CUSTODY RECORD Quote No.: P.O. No.: Comments: Containers No. of 130 Ţ 7 Client Tracking No.: Preserv Date/Time/13/ Grab Date/Time: Date/Time: dwo5 Date/Time: Date/Time: Date/Time: Matrix 930 1030 045 \$ × Phone: Time Taken e-mail: 85°5° 348 1100 98 1001 3e 3/ Fax: Date Taken 5/13 Client Sample Number/Description: ature) (Signature) Relinquished by: (Signatu Received by: (Signature) Received by: (Signature) Received by: (Signature) Company: 12 Project Number: Project Location: Relinquished by: (Sign Project Name: QC Level: 1 Sampler(s): Report To: Relinquished

STAT Analysis Corporation

Sample Receipt Checklist

Client Name K-PLUS			Date and Tim	e Received:	5/13/2010 11:30:00 AM
Work Order Number 10050355	· · · · · · · · · · · · · · · · · · ·	-/	Received by:	CDF	
Checklist completed by:	Date	(17/1)	Reviewed by:	Initials	5/14/10
Matrix:	Carrier name	Client Delivered			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/c	ooler?	Yes	No 🗌	Not Present 🔽	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗸	No 🗌		
Chain of custody signed when relinquished an	d received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels/co	ontainers?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗸	No 🗌		
Sample containers intact?		Yes 🔽	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		
Container or Temp Blank temperature in comp	oliance?	Yes 🗹	No 🗌	Temperatur	e 5.9 °C
Water - VOA vials have zero headspace?	No VOA vials subm	nitted	Yes	No 🗵	
Water - Samples pH checked?		Yes	No 💷	Checked by:	
Water - Samples properly preserved?		Yes 🚇	No 🗐	pH Adjusted?	
Any No response must be detailed in the com	ments section below.				
Comments:					
Client / Person contacted:	Date contacted:		Conta	acted by:	
Response:					

APPENDIX 5 INSPECTOR QUALIFICATIONS

Title: Sr. Project Manager

Years Experience: 10+

Education:

BS, Environmental Health Sciences, Illinois State University, Normal, IL

AHERA Building Inspector: IL

OSHA 40 Hour Hazardous Waste Training

OSHA 8-hour Hazardous Waste Training Refresher

Erosion and Sediment Control Course 8-hour AIA Registered.

SUMMARY OF EXPERIENCE

Mrs. Madsen combines scientific expertise and business management skills to meet the due diligence needs for a variety of clients in a professional, time efficient and cost effective manner. Her educational training, project management experience, and communication skills provide a solid foundation to meet the environmental consulting needs of a diverse client base, including customers in banking, real estate development, government and industrial settings. At K-Plus, Ms. Madsen provides her customers with the tools required to make productive environmental decisions.

Ms. Madsen has been in the environmental consulting industry for at least the past ten years, which has cultivated a deep understanding of environmental issues within a business-conscious framework. During her tenure, she has developed outstanding research, field work, data interpretation, technical writing and communication skills, and has been recognized in scientific, government and business publications. Her training includes a bachelors degree in environmental sciences from Illinois State University, where her studies included courses in; Environmental Health Practices, Health Data Analysis, Water Quality and Treatment, Waste Management Practices, Environmental Toxicology, Food Protection, Control of Institutional Environments, Pollution Prevention, Occupational Health, Epidemiology, Decision Processes, as well as, complete courses of study in Chemistry, Physics, Geology, Human Anatomy and Physiology and Biology. Ms. Madsen's extensive curriculum has provided her with a broad base of technical scientific knowledge.

Since becoming an environmental professional, Ms. Madsen has conducted a variety of local and international site assessment activities, including property inspections (Phase I ESAs, TSAs, Phase I Updates and compliance assessments), soil and groundwater investigations, storage tank removals, abandonments and remediation activities. In connection with these tasks, Ms. Madsen has demonstrated her acute technical abilities by designing statistical analyses (including averaging and composite techniques) and modeling contaminant transport patterns, which has allowed her to successfully design and manage site closures in accordance with current federal, state and local environmental regulations.

REPRESENTATIVE EXPERIENCE

Spill Response Remediation and Restoration, Rancho Cordova, CA

Project Manager for the environmental remediation of a large tract of land contaminated by a spill of PCB-contaminated oil. Because the contamination was on private property not owned by the responsible party, the cleanup objective for the work was total removal of all contamination. Mrs. Madsen directed all onsite removal and restoration activities that were completed. All work was completed on an expedited schedule over a holiday weekend.

Former Industrial Facility, Seneca, IL. SRP Site Closure

 Served as Resident Engineer to manage and direct the final phase of an environmental clean up of a former industrial site adjacent to Illinois River. Work involved the testing and removal of soil contaminated by pesticides, followed by site restoration. K-Plus worked under the supervision of the Illinois EPA during the cleanup effort.

Industrial Facility, Skokie, IL

SRP Site Closure

Leaking tanks identified at an adjacent parcel migrated off-site. An extensive subsurface investigation was completed to determine the horizontal and vertical extents of the soil and ground water contamination. During the investigation, secondary surficial soil contamination was identified on the site due to spillage or dumping from the former adhesives manufacturing operations. The site was closed following fate and transport modeling. The closure was achieved with minimal cost to the owner by utilizing land restriction and an engineered barrier and without any active remedial activities. Upon review, the IEPA issued a No Further Remediation (NFR) letter for the property.

Commercial Facility, Melrose Park, IL

Leaking Underground Storage Tank Program

During an environmental assessment of the property, it was determined that the prior use of the property was a gasoline station. Following a magnetometer survey that suggested tanks were still present at the property, Mrs. Madsen directed the removal and destruction of the tanks. During removal activities it was determined that one or more of the tanks had experienced a leak, therefore a Leaking Underground Storage Tank (LUST) incident number was obtained and all affected soils were removed from the property. The site was cleaned to Illinois residential property standards and the Illinois EPA issued a NFR letter with no restrictions

Environmental and Erosion Control Manager.

• Mrs. Madsen worked with Walsh Construction on their North-South Tollway Expansion Project. Mrs. Madsen worked with the Illinois Tollway alongside numerous Agency representatives to organize and protect the sensitive wetland species, as well as, the Hine's Emerald Dragonfly (endangered), identified in the Des Plaines River Valley during the construction of the I-355 Bridge through Lemont, Illinois. The project included the design and implementation of a Maintenance Plan, Environmental-Safety Discussion, Dust Control Plan, Pollution Control Plan, as well as, the implement of the Erosion Control Plan, which was prepared and approved by the IEPA, in coordination with the local Agencies.

National Marine, Wetland Monitoring and Ecological Assessment.

This project was located on the Illinois River within a flood plain. The site contained forested and wetland areas and a variety of vegetation and wildlife. Mrs. Madsen, Project Scientist, was responsible for performing site characterization and water quality investigations and evaluations. Assisted with the natural resource assessments and monitoring. Performed soil, surface water and groundwater sampling. Completed draft reports for submittal to the USEPA under CERCLA.

Federal Agency Experience

Mrs. Madsen has worked on numerous Phase I Environmental Site Assessments for potential cellular tower sites located throughout the Midwest. As part of these projects Mrs. Madsen was required to complete full NEPA screens on these properties in order to receive a Finding of No Significant Impact (FONSI) letter from the FAA.

National Experience

• Mrs. Madsen has traveled to other states in order to conduct Phase II Subsurface Investigations such as: New York, Michigan, Indiana and Texas. With the Subsurface Investigations in foreign states it is necessary to comply with the local state or USEPA regulations, especially when looking at the analysis of lab data. Mrs. Madsen has conducted the research behind the regulations, in order to learn acceptable chemical limits for the soils in each of these states, as well as, completed detailed technical reports which meet those state regulations.

Title: President

Years Experience: 25

Education:

MM, Finance and Managerial Economics, J.L. Kellogg Graduate School of Management, Northwestern University

MPH, Industrial Hygiene and Safety Engineering, University of Illinois at Chicago

BS, Civil Engineering, University of Illinois

Professional Engineer: IL, IN, IA, FL, KY, MI, MN,MO, OH, NC, OH, PA, and WI,

AHERA Building Inspector: IL and IN

LUST Site Assessor: WI and IN

OSHA 40 Hour Hazardous Waste Training

OSHA 8-hour On-site Management & Supervisor Training

HM-126F Safe HazMat Transportation Training

Radon Detection Services

Corrective Actions for Ground Water Contamination

SUMMARY OF EXPERIENCE

Mr. Caplice is a licensed professional engineer in 13 states with 25 years of environmental engineering and consulting experience. He has an in-depth understanding of local, state and federal regulations and has performed projects in accordance with CERCLA, RCRA, CWA/Oil Pollution Act, CAA, and TSCA requirements. His specialized areas of expertise are evaluation of contaminated properties, assessment of risk and endangerment, regulatory compliance and permitting, hazardous waste management, industrial processes, Brownfield development, water quality, and site management including investigation, remediation, construction management, and monitoring.

Currently Mr. Caplice is President of K-Plus Environmental, a 15 year-old, full service environmental engineering and consulting company with offices in Illinois, Indiana, Wisconsin, North Carolina, South Carolina, and Colorado. As President, Mr. Caplice is responsible for managing and directing the company in addition to his ongoing work.

Prior to joining K-Plus, Mr. Caplice served in several capacities for the USEPA, Region 5, including Manager of the Illinois/Indiana Unit of the Remedial Response Section, Waste Management Division and Manager of the Pre-Remedial Unit, Waste Management Division. As Manager of the Pre-Remedial Unit, Mr. Caplice investigated and assessed abandoned waste sites (CERCLIS sites) for possible inclusion on the National Priorities List. As Manager of the Illinois/Indiana Unit he supervised eight project managers in the technical and legal aspects of site investigation and remediation and he directed the progress at over 40 Superfund sites. As an RPM/OSC he was responsible for the investigation, alternative selection, design, implementation, and enforcement of cleanups at numerous Superfund sites including the Outboard Marine/Waukegan Harbor site, the LaSalle Electric Utilities, Tar Lake, and Verona Well Field. Mr. Caplice also regularly represented the USEPA at the International Joint Commission on Water Quality in the Great Lakes.

REPRESENTATIVE EXPERIENCE

Private Clients

- NAMPAC. Ontario, California. Responsible for assessing and remediating petroleum and chlorinated solvent contamination in soil and groundwater beneath an active plastic manufacturing facility. Developed a plan to stage the cleanup over an 18 month period in order to completely remediate the subsurface contamination to residential objectives without shutting down the facility operations. Developed all project documents including work plans, site assessment reports, remedial design plans, bid specifications, and remedial action completion reports. Met all the requirements of the LARWOCB for site closure.
- Rhodia. Chicago Heights, Illinois. Mr. Caplice directed the removal of phosphorous from a municipal sewer line after the extremely hazardous substance was identified in the sediments during the attempted cleaning of

the nearly one mile long line. The phosphorous contamination was apparently caused by historic operations at the Rhodia facility that ceased over 50 years beforehand. Because white phosphorous ignites and burns on contact with air, all work was completed either under water or under a nitrogen blanket to prevent spontaneous combustion. Upon completion of the removal and sewer cleaning, all waste was shipped to Sauget, Illinois where it was destroyed in a commercial incinerator.

- Yacht Haven Hotel. St. Thomas, U.S. Virgin Islands. PRM Realty. Responsible the remediation of asbestos contamination in a complex that was damaged by hurricane and scheduled for demolition and redevelopment. Designed an abatement and demolition program that called for the controlled demolition of the structure, waste segregation, off-site shipment and off-island disposal of asbestos masonry components, on-site crushing of non-asbestos components, and re-use of crushed materials. The project was complicated by rules prohibiting disposal of contaminated waste on the island as well as working adjacent to the water in the main ocean port for the island.
- INX. Charlotte, SC. Took over the design of new ink manufacturing plant after the original engineering firm was fired for failure to complete work on a timely basis. Work included the revision of existing P&ID and general arrangement drawings, completion of process piping drawings, revision of existing equipment list. Preparation of a pipe line index based upon the P&ID's and piping drawings, completion of line size calculations for all piping, and review and approval of all mechanical contractor submittals for process equipment. In addition, all provided technical oversight and management during construction by answering questions from the contractors and completing routine site visits to review the progress of the work and to review schedule and goals with the contractor.
- Chemical Plant. Chicago, IL, Provided regular environmental compliance advice to plant personnel to ensure operations are in strict compliance with all applicable environmental rules, regulations, and requirements. In addition to RCRA and CERCLA issues, Mr. Caplice was also called on to be the lead person during the cleanup and investigation following two spills at the plant. Mr. Caplice also evaluated historic operations at the plant that used contaminated raw materials. In that role, he designed and managed the implementation of the controlled decontamination and demolition of three former chemical production lines and ancillary equipment at the facility that were found to be grossly contaminated with an extremely hazardous substance.
- National Marine Industrial Site. Seneca, Illinois. American Commercial Barge Lines. Following an NPL Site Assessment by the IEPA of this abandoned facility, the project was transferred to the USEPA Region 5's Emergency Response Section as a non-time critical emergency removal site for cleanup, investigation, and oversight. The 65 acre site located adjacent to the Illinois River was contaminated with PCBs, solvents, pesticides, and lead. Mr. Caplice was responsible for managing all tasks associated with the

completion of the Phase I ESA and II ESAs, Site Investigation, Quality Assurance Plan, Remedial Design/Feasibility Analysis, groundwater monitoring, and Emergency Response, and three stages of Remedial Action. He managed the subcontractor agreements, permitting, sampling, testing, and negotiations and coordination with the Agency. He also developed engineering cost estimates for each remedial alternative and evaluated the feasibility of each. A portion of the remedial action included closing three waste treatment lagoons adjacent to the River, on site stabilization of contaminated soil and sludge, installation of slurry walls and engineered caps, and restoration of a forested area. Work was performed in accordance with CERCLA/RCRA/CWA/NCP Caplice requirements. Mr. responsible for negotiating remedial objectives and closure requirements with the USEPA and IEPA, and at the end of the Project he obtained a complete release from the USEPA and a Comprehensive NFR letter for the entire site from the IEPA.

- R. Lavin & Sons. North Chicago, Illinois. R. Deutsch, Levy & Engel (2004). Worked as the environmental consultant for the Creditors Committee following the closure of this secondary foundry. Due to this large industrial facility's location near a waterway, the USEPA, IEPA, NSSD, and the U.S. Navy were concerned that material remaining on site would impact surface waters. Facility had numerous issues including exposed piles of slag, pits and tanks containing up to 1.5 million gallons of process water and 2 million gallons of contaminated storm water. Served as expert witness in US Bankruptcy court proceedings, negotiated AOC scope of work with USEPA and DOJ representatives, managed site investigations and remedial action in accordance with RCRA/CERCLA and NCP requirements.
- Chicago Service. Bedford Park, Illinois. Millennium Chemical. This abandoned 15 acre industrial complex large site included five high bay industrial buildings; several ASTs and USTs; over 400 55-gallon unlabeled drums of process chemicals and industrial waste; over 40 in ground pits filled with oil, sludge, and debris; large shot blast equipment; industrial degreasers; and several areas where open dumping of waste had occurred Upon completion of a ESA, Mr. Caplice managed and directed the abatement of asbestos within the buildings, the characterization and disposal of all 55-gallon drums and other discarded process chemicals and industrial waste at the facility, the cleaning and closure of all in-ground pits a detailed subsurface investigation of soil and ground water contamination at the property, and the proper removal and closure of all USTs and ASTs at the property. All LUST incidents were properly closed in full compliance and the site was enrolled into the voluntary Site Remediation Program. Mr. Caplice then prepared full documentation of all remedial and investigative activities at the site and submitted the documentation to the IEPA in order to fulfill Illinois closure requirements and obtain multiple NFR letters documenting the successful completion of the work. Contaminants at the facility included BETX, PNAs, chlorinated solvents and breakdown compounds, and various metals.

- Rhodia, Chicago Heights, Dalton, and Blue Island, Illinois. Mr. Caplice has been providing ongoing environmental compliance support and management service to the Chicagoland chemical manufacturing facilities for Rhodia. Services include RCRA reporting, annual hazardous waste reports, SPCC Plans, SWPP Plans, Tier I and Tier II Reports, and Toxic Release Inventory (TRI) Reports.
- Bowling Products Manufacturer. Lake Bluff Forest, Illinois. DBA Products. Managed the Site Investigation (Phase II ESA) to evaluate the extent of chlorinated solvent contamination in soil and groundwater; performed a remedial investigation/feasibility study; conducted pre-design investigations, developed an engineering evaluation and cost estimate for remedial alternatives, and provided construction management, sampling and documentation during the remedial action. Remediation consisted of a combination of technologies, low temperature thermal desorption and a gravity-fed groundwater collection system. Secured a Comprehensive NFR letter via the IEPA's SRP program.
- Caterair, Inc.. Franklin Park, Illinois. Managed the investigation and cleanup of a large industrial site near O'Hare Airport. Mr. Caplice directed all investigative and cleanup activities and completed all LUST Program and Reimbursement requirements including early action documentation, site investigations, and corrective action (excavation, removal, and risk evaluation) activities. First consultant to receive maximum \$1 million reimbursement approval from the IEPA.
- **S & C Electric Company,** Chicago, Illinois. Responsible for completing the RCRA Contingency Plan and SPCCC plan for industrial facility. Also reviewed air permits and completed CAA reporting requirements. Inspected all particle sources and prepared a Fugitive Dust Control Plan.
- McCook Metals, McCook, Illinois. Provided environmental compliance services for operations at this 3 million square foot industrial facility. Work included NPDES monitoring and reporting; MWRD sampling, monitoring, and reporting; annual air emission reports; various Title V compliance reports; and annual hazardous waste reports. Also directed the removal of unused underground storage tanks at the facility and prepared the required LUST compliance reports to document the proper closure. Upon shut-down of the facility, worked with the Bankruptcy Trustee to characterize the remaining environmental liabilities at the site, monitor and direct asbestos abatement activities, and negotiate with MWRD and IEPA officials regarding the closure of the NPDES and DA permits.
- Armoloy of Illinois, Inc. DeKalb, Illinois. Managed all annual environmental reporting (Form R, Tier II, TRI, and annual Hazardous Waste Report) and permits (FESOP, state operating permits, and annual emissions reports) for this industrial plating facility.

■ TC Industries Inc. Crystal lake, Illinois. TC Industries Inc. is one of the largest heat treating facilities in the country. Mr. Caplice managed and directed a Phase I ESA and Compliance Audit of the facility. He also conducted permit reviews (Title V, NPDES, and industrial discharge permitting) for this 600,000 square foot manufacturing plant which included a waste water discharge pre-treatment facility.

Municipalities and Other Government Agencies

- Phase I ESAs and NEPA Documentation. Numerous Airports and aviation facilities in IN, IL, WI, and MI. Federal Aviation Administration. Program Manager responsible for managing the Phase I ESAs and NEPA Environmental Assessments conducted for airport properties located in Illinois, Michigan, Indiana, and Wisconsin that were owed and/or leased by the FAA for LLWAS, Visual Omni Range with Tactical Air Navigation (VORTAC), and Remote Transmitter/Receiver (RTR) equipment sites.
- Supply Side Landfill Monitoring. NAV FAC Midwest. Great Lakes Naval Facility Performed monthly monitoring of numerous wells and the adjacent stream on the property to fulfill landfill permit requirements. Routinely performed landfill inspections to identify leachate seeps, breaches to the cap and any other abnormality. Completed quarterly reports to the IEPA. Work was completed in accordance with project quality control manual. Completed an alternative analysis and engineering estimates for repairing the landfill cap and some ongoing issues with the landfill.
- LaSalle Electric Utility. USEPA Region 5.. Managed the Remedial RI/FS (Investigation/Feasibility Study) of this NPL site in LaSalle, Illinois in order to determine the extent of PCB contamination in the residential neighborhood adjacent to the abandoned electrical equipment manufacturer. After writing the Record of Decision that was approved in Region 5 and in Washington and signed by the Regional Administrator, directed the design of the selected remedial alternative that included construction of an incinerator on the site of the former facility, the excavation of contaminated soil from a four block area of a residential neighborhood, relocation of 20 families from their homes during the project, cleaning of the homes in the area. Work included the in-depth and detailed planning and community relations required to gain 100 percent community acceptance of the selected alternative and the plans, and then restoration of the area.
- Outboard Marine Corporation (OMC), Waukegan, Illinois. USEPA Region 5. RPM for this old industrial NPL site that was contaminated with PCBs. Technical expert for the Agency during negotiations with responsible parties that lasted nearly 3 years. During that time period negotiations included the evaluation of remedial alternatives for PCB contamination in soil and in sediments located in the adjacent harbor. Planning included evaluation of dredging and dewater techniques, evaluation of alternative disposal options for the PCB waste such as in place containment in the waterway, as well as a risk evaluation of the various alternatives. At the same time, Mr. Caplice served as the technical expert for the Agency as it pursued a dual track of litigation to force the responsible party to complete

the work. In that capacity, Mr. Caplice prepared technical documents to support submittals of brief and arguments to the U.S. District Court, the U.S. 7th Circuit Court of Appeals, and the U.S. Supreme Court. He also worked with Agency staff in Washington to prepare amendments to Superfund legislation to address some of the issues raised by this site. Upon leaving the Agency in 1988, the USEPA waived its standard conflict of interest rules and allowed the Responsible Party to retain Mr. Caplice to serve as a technical expert during the final stages of negotiations on the cleanup that included dredging of the harbor and ditches, construction of a containment cell in the end of the harbor, and construction of a new slip to replace the one where the containment cell was constructed.

- Verona Well Field. Battle Creek, Michigan. USEPA Region 5. On Scene Coordinator (OSC) for emergency action completed to prevent the loss of entire municipal well field to a plume of chlorinated solvents. After modeling showed that peak summer water demand would accelerate the migration of the contaminate plume into the well field, an emergency action was planned to construct a hydraulic barrier in the well field and protect the majority of the City's potable wells. Mr. Caplice was the OSC that directed the construction of the hydraulic barrier system. The project included the design and construction of a pump station capable of moving 2 million gallons of water daily from a series of existing wells across the well field. Once the target wells were identified, a series of force mains were constructed to re-direct water from the wells to a new reservoir and pump station that then pumped it through a series of carbon filtration units before discharge to the adjacent river until an air stripper could be fabricated to more efficiently remove the contaminants. The entire project was completed in 6 weeks and the system, with some modifications, is still operating today.
- Cross Brothers Pail Recycling, Pembrook, Illinois. USEPA Region 5.

 RPM for the 20 acre NPL site. The pail and drum reclamation business operated by Cross Brothers at the site from 1961 to 1980. The reclamation operation consisted of placing drums and pails containing dye, ink, and paint residue onto the ground, allowing the contents to drain. Waste solvents were then poured over the containers to dissolve the remaining residue prior to reconditioning the drums. Mr. Caplice was the RPM that coordinated the completion of an RI/FS and then interim remedial measures (IRM) in 1985 to clear the disposal area of vegetation and remove 6,500 tons of contaminated surficial soil, 60 tons of crushed pails, 550 drums contained wastes, and 580 empty drums. Following the completion of the IRM, a hydrogeological study and feasibility study were completed and groundwater was found to be contaminated with volatile organic compounds (VOCs) such as benzene, toluene, and xylenes and heavy metals including lead and the soil was contaminated with polychlorinated biphenyls (PCBs) and VOCs.
- Village of Lombard. Completed Phase I ESA AND Risk Analysis for proposed property transactions as part of downtown re-development.
- Village of Orland Park. Completed Phase I ESA AND Risk Analysis for proposed property transactions as part of downtown re-development.

